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ACTIONS OF PI3K-DELTA INHIBITOR, IDELALISIB, AND ITS COMBINATION 

WITH BENDAMUSTINE IN CHRONIC LYMPHOCYTIC LEUKEMIA 

 

Prexy Modi, B.S. 

Advisor: Varsha Gandhi, Ph.D. 

 Class I phosphatidylinositol 3-kinase isoforms (α, β, δ, and γ) play a major role in cancer 

cell growth and survival.  PI3K α and β are most studied.  PI3K pathway is highly dysregulated 

in many cancers and aberrant PI3K signaling is associated with oncogene mutations and disease 

progression in solid tumors and in hematologic malignancies.  

Chronic lymphocytic leukemia (CLL) is driven by B-cell receptor (BCR) signaling that 

promotes B-cell proliferation and survival.  PI3K is a critical node in BCR pathway and PI3Kδ 

has a pivotal role in B-cell development and maintenance and this isoform is over-expressed in 

many B-cell malignancies, including CLL.  

Idelalisib is a FDA approved small molecule PI3Kδ inhibitor. Idelalisib promotes 

apoptosis in CLL by disrupting molecular pathways related to BCR signaling, leukemic 

migration and signals from the microenvironment. Importantly, idelalisib inhibits BCR-derived 

PI3K signaling, dampening survival signals. We hypothesized that similar to inhibition of α and 

β isoforms, attenuation of PI3Kδ will repress transcription, reduce short-lived anti-apoptotic 

proteins, induce DNA damage and repair responses, leading to enhanced apoptosis of malignant 

CLL cells.  

Idelalisib treatment induced moderate levels of apoptosis in CLL lymphocytes. Idelalisib 

treatment with IgM stimulation decreased phosphorylation of AKT, a downstream signaling 
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molecule. We observed a significant decrease in global RNA synthesis and a decline in Mcl-1 

transcript and protein levels, with no changes to Bcl-2 protein and mRNA expression. 

Interestingly, we observed that idelalisib induced γH2AX, a hallmark for DNA damage and 

repair response.  

Bendamustine is a FDA approved alkylating agent for CLL therapy. We hypothesized 

that idelalisib-mediated decline in Mcl-1and bendamustine-induced DNA damage will sensitize 

B-CLL cells and this mechanism-based combination will lead to a synergistic interaction.  

At clinically relevant concentrations, bendamustine and idelalisib as single agents 

induced moderate level of apoptosis; however, combination treatment resulted in enhanced CLL 

cell death. Combination index assessment demonstrated that idelalisib and bendamustine 

couplet resulted in synergistic cytotoxicity.  Mechanistic investigations suggest that the synergy 

maybe due to modulation of Mcl-1 protein levels and DNA damage and repair responses in 

CLL. Collectively, the emerging role of PI3K inhibitor in combination with bendamustine 

provides a unique modality for CLL therapy.  
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CHAPTER 1: Introduction 

PI3K: Function and expression 

The phosphoinositide 3-kinase (PI3K) family plays a major role in nearly all aspects of 

cellular biology and it is a key node in human cancers, metabolism and aging. Signaling through 

the PI3K families of enzymes play a multifunctional role in plethora of cellular activities 

mediating functions such as cellular growth, proliferation, differentiation, motility, intracellular 

trafficking, and metabolism. PI3K pathway is highly dysregulated in many cancers and aberrant 

PI3K signaling is associated with oncogene mutations and disease progression in solid tumors 

and in hematologic malignancies (1). PI3Ks are activated and recruited by broad range of 

growth factors; these enzymes convert phosphatidylinositol-4,5-bisphosphate (PIP2) to yield 

phosphatidylinositol-3,4,5-trisphosphate (PIP3) (2). This lipid product acts as second messenger 

by binding and activating downstream cellular targets.  

There are three distinct classes of PI3Ks; I, II and III grouped according to their structure 

and function. Class I PI3K is most investigated and has two subclasses, IA and IB. Class IA 

PI3K is a heterodimer consisting of a regulatory subunit and a catalytic subunit and it is found to 

be highly implicated in human cancers (3-5). The regulatory subunit consists of p85 and the 

three mammalian genes, PIK3CA, PIK3CB, and PIK3CD, encode for the catalytic isoforms, 

p110α (alpha), p110β (beta) and p110δ (delta) (6). Class IB PI3Ks are composed of two 

regulatory subunits (p101 or p87) and has one catalytic subunit p110γ (gamma), encoded by 

gene PIK3CG. Class IA PI3Ks are activated by direct interaction with receptor tyrosine kinases 

(RTKs), non-receptor tyrosine kinases (non-RTKs), G-protein coupled receptors (GPCRs) and 

Ras, whereas class IB PI3Ks are activated by only GPCRs and Ras (6,7). The main function of 
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the regulatory subunit is to facilitate membrane localization, receptor binding and activation, 

while the catalytic subunit mediates phosphorylation of (PIP2) to yield (PIP3) (8). Class I PI3K 

signaling is activated in human cancers through various mechanisms. Such activity is due to 

mutational activation or amplification of genes encoding the distinct isoforms and their subunits 

of the PI3K pathway.  

PI3K Class I: Isoform expression and function 

There are four class I catalytic isoforms that share overlapping but distinct functions and 

differential expression. The p110δ and p110γ isoforms function and expression are restricted in 

immune cells, whereas p110α and p110β are ubiquitously expressed in mammalian tissues (3). 

Genetic ablation of p110α or p110β isoforms results in embryonic lethality, indicating its 

essential and non-redundant roles during development (9). P110α isoform has a role in insulin-

dependent signaling and p110β has been shown to have a role in platelet aggregation, insulin 

signaling and thrombosis (10). P110δ and p110γ play a key role in lymphocyte activation and 

signaling, chemotaxis and mast cell degranulation. In contrast to mice lacking PI3K α and β, 

mice deprived or with mutant phenotypes of p110δ and p110γ have severely impaired immune 

response (11,12). P110δ knockout and kinase inactive knock-in mice show very specific 

impairment in B-cell signaling and response leading to defects in B-cell development, T-cell 

dependent and –independent antigen stimulated antibody generation (3,4). Studies in humans 

have been reported that gain-of-function mutations in PIK3CD, which encodes p110δ, severely 

impaired development and function of memory B-cells (12).  

PI3Kδ in B-cell development and hematologic malignancies 

PI3K signaling is activated or altered in many solid tumors as well as in hematologic 

malignancies and is found to display varying levels of mechanisms to achieve the malignancy 
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status. Numerous reports have identified the pivotal role of class I PI3Ks in leukemias and 

lymphomas. In chronic lymphocytic leukemia, PI3K is not often mutated, but it signals 

downstream of the B-cell receptor pathway, leading to increased expression of many anti-

apoptotic proteins (13,14). The constitutive activation of the PI3K in CLL is dependent on the 

p110δ isoform (13). Similarly, in Hodgkin’s lymphoma (HL) cell lines, compared to other 

isoforms, PI3Kδ expression is found at higher levels (15). PI3Kδ is widely expressed in mantle 

cell lymphoma (MCL) and is shown to have modest activity (16,17). There is also constitutive 

activation of the PI3K pathway through the B-cell receptor which leads to dysregulation of cell-

cycle progression in MCL cell lines and in primary samples (17). Even in non-B-cell 

malignancies, such as acute myelogenous leukemia, p110δ plays a critical role in PI3K activity. 

From the recent studies in Ali et al, inhibition of the PI3Kδ isoform in mice disrupts the function 

of the regulatory T cells and shifts the response towards effective anti-tumor activity (18). This 

mechanism further provides a strong rationale for p110δ inhibition both in a broad range of 

solid tumors and in hematologic malignancies  

PI3Kδ in BCR signaling  

The regulatory subunits of PI3Ks facilitate membrane localization, receptor binding and 

activation, whereas the catalytic subunit phosphorylates phosphatidylinositol-4,5-bisphosphate 

(PIP2) to yield phosphatidylinositol-3,4,5-triphosphate (PIP3). The PIP3 initiates downstream 

signaling by recruiting 3-phospho-inositide-depedent kinase 1 (PDK1) to the membrane, 

activating AKT by phosphorylating the threonine 308 residue (19) (Figure 1). Activation of the 

AKT also occurs by phosphorylation at serine 473 by mammalian target of rapamycin (mTOR). 

The B-cell receptor pathway (BCR) signaling pathway is critical for development and 

maturation of normal B-cells. The class 1 PI3K isoform recruits downstream proteins of the 
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BCR pathway such as the activation of the PI3K, Bruton’s tyrosine kinase (BTK) and AKT 

promoting cell survival by activating NF-κB and inhibiting apoptotic signals (20,21). The BCR 

signaling is initiated with an antigen specific immunoglobulin (Ig) that forms a non-covalent 

complex with CD79a and CD79b which have cytoplasmic domains that contain the 

Immunoreceptor Tyrosine-based Activation motif (ITAMs). Upon BCR ligation, this complex 

can recruit multiple kinases and adaptor molecules stimulating BCR signaling cascade for the 

growth, survival and expansion of the B cells. Activated ITAMs can phosphorylate Lyn, recruit 

SRC family kinases, and further downstream kinases such as BTK. Signaling through BCR also 

activates the PI3K/AKT/mTOR pathway (22). Neoplastic B cell lymphomas maintain the 

expression of surface immunoglobulin and have functional BCR signaling. The complex BCR 

pathway interacts with multiple factors from the microenvironment and other stimulating factors 

(chemokines and cytokines) leading to constitutively active state, further contributing to the 

growth, survival and expansion of the malignant B-cells (23). 

PI3Kδ regulation and function 

 PI3Kδ critically regulates a number of signaling pathways in normal and malignant B 

cells. There pathways are driven by multitude of receptors including BCR, Fc-gamma receptor 

(FcγR), TLR, C-X-C chemokine receptor type 4/5 (CXCR4/5), and the tumor necrosis factor 

(TNF) receptor family (24,25). PI3Kδ also regulates B-cell responses to CD40-ligand, B-cell 

activating factor (BAFF), IL-4, and to the homing chemokines CXCL12/13 (23,25-27). All of 

these interactions feed into the overall B-cell signaling. PI3Kδ is a key player downstream of 

BCR activation from all the microenvironmental factors and thereby promoting malignant B-

cell proliferation, growth, survival, adhesion, and homing and metabolism. BCR activation 

recruits and phosphorylates tyrosine kinase Lyn and spleen tyrosine kinase (Syk) at the plasma 
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membrane, and it also recruits an adaptor protein non-catalytic region of tyrosine kinase adaptor 

(Nck) (28). PI3Kδ is recruited to the cell membrane, mediated by the association of p85 

regulatory subunit to the phosphorylated tyrosine motifs in the B-cell antigen CD19 and the B-

cell PI3K adaptor protein (BCAP) (29). CD19 and BCAP get phosphorylated and act as docking 

sites for the p85 regulatory subunits, a critical step for recruitment and activation of p110δ 

catalytic subunit (30). Refer to figure 1 for the role of PI3Kδ in BCR pathway. 

Importantly, key pathways coordinate downstream PI3Kδ; AKT/mammalian target of 

rapamycin (mTOR), mitogen-activated protein kinases (MAPK), and nuclear factor kappa light-

chain enhancer of activated B cells (NF-κB), are turned on in B-cell malignancies upon BCR 

activation (31,32). AKT is the most characterized downstream effector of PI3Kδ. Further 

oncogenic effectors downstream of AKT play critical roles in regulating cell cycle and cell 

survival (mouse double minute 2 homolog (MDM2), p53, forkhead box O (FOXO), cell 

trafficking (glycogen synthase kinase 3 beta (GSK-3β), DNA repair (MDM2, p53), 

chemoresistance (NF-κB), and energy metabolism (GSK-3β, mTOR) (33,34). 
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Figure 1.  

        

     

Yang Q, Modi P, Newcomb T, Quéva C, Gandhi V. Idelalisib: first-in-class PI3K delta inhibitor 

for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular 

lymphoma. Clin Cancer Res;21:1537-42. 

Figure 1: BCR pathway and the role of PI3Kδ 

Figure reprinted by permission from CCR journal, also I share first co-authorship in the article. 

(2015). All rights reserved.  
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Development of PI3K pan or isoform specific inhibitors 

 For more than two decades, the PI3Ks field has evolved from their initial discovery, the 

understanding their physiologic activities and function as lipid kinase with PIP3 as a product, 

and their oncoprotein properties to specifically targeting these kinases to treat cancer and 

inflammation. The timeline figure 2; highlights the key events of PI3K discovery and the 

progressive findings that have led to the growth of PI3Kδ specific therapy. Initially, scientists 

focused on the development of pan-PI3K inhibitors such as LY294002 (35). However, with the 

discovery of PI3Kδ selective expression in hematopoietic cells, isoform-specific inhibitors were 

designed (31,36). IC87114 was the first isoform-selective inhibitor of PI3Kδ subunit (37). 

Several new isoform-specific inhibitors have been developed by different pharmaceutical 

companies; their potency and specificity are reviewed in detail by Brana and Siu (38).  

Idelalisib, PI3K delta inhibitor 

Idelalisib (Zydelig™), (5-fluoro-3-phenyl-2-[(S)-1-(9H-purin-6-ylamino)-propyl]-3H-

quinazolin-4-one) formally called CAL-101 or GS-1101, is a small molecule antagonist ATP-

competitor of p110δ, the catalytic subunit of PI3Kδ (Figure 3). Idelalisib was identified as a 

selective p110δ inhibitor through high throughput screening and a kinome-wide screen using 

purified enzymes and in cell-based PI3K isoform specific assays. The IC50 of idelalisib for 

PI3Kδ was 19 nM, whereas the IC50 values for PI3Kα, PI3Kβ, and PI3Kγ were 8,600; 4,000; 

and 2,100 nM, respectively (34). Idelalisib at a concentration of 10 μM did not significantly 

interfere with ligand-receptor binding in a panel of 61 receptors including G-protein coupled 

receptors (GPCRs), ion channels, receptor tyrosine kinases, steroid receptors, and transporters. 

Idelalisib at 10 µM did not interact or inhibit any other kinases except for PI3K isoforms (34).  
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Figure 2.  
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Figure 2: Timeline of PI3 Kinase and Idelalisib 
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Figure 3. 
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Figure 3. Chemical structure of idelalisib  

 

(5-fluoro-3-phenyl-2-[(1S)-1-(9H-purin-6-ylamino)propyl]quinazolin-4(3H)-one) 

Figure reprinted by permission from Expert Opinion on Orphan Drugs journal, also I share first 

co-authorship in the article. (2015). All rights reserved.  
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Other PI3K delta inhibitors  

To date, besides idelalisib, several other PI3Kδ-specific inhibitors are currently being 

investigated in clinical trials. ACP-319 (Amgen Inc. – Acerta Pharma) is currently in phase 1 

trials for patients with relapsed or refractory CLL in combination with Acerta’s Bruton’s 

tyrosine kinase (BTK) inhibitor (39). INCB40093 (Incyte Pharmaceuticals) entered phase I 

evaluation for refractory B-cell malignancies and may be further tested in combination with 

Incyte Pharmaceuticals’ Janus kinase 1 (JAK1) inhibitor (clinicaltrials.gov NCT01905813). 

TGR-1202 (TG Therapeutics) is in phase I clinical trial with the most notable combinations 

being with brenduximab vedotin in Hodgkin’s lymphoma and with chlorambucil and 

obinutuzumab for CLL (clinicaltrials.gov). Finally, IPI-145, also known as duvelisib (Infinity 

Pharmaceutical), is a dual PI3Kδ and γ inhibitor, and is currently being evaluated as a single 

agent in Phase 3 trials for patients with advanced CLL and other hematologic malignancies (40). 

Chronic lymphocytic leukemia (CLL) and its molecular pathogenesis 

Chronic lymphocytic leukemia (CLL), a B-cell malignancy is the most common adult 

leukemia in the western world; with predominant cases in North America and Europe regions. 

The rate of incidence is double in men and the median age of diagnosis is 72 years. CLL is 

characterized by the clonal expansion of CD5+ CD23+ B cells in the peripheral blood, bone 

marrow and secondary lymphoid tissues. Generally, CLL is asymptomatic in most patients and 

symptoms in advanced stages include anemia, enlargement of lymph node and bone marrow 

failure (41-43).  

The malignant B CLL cells are mature lymphocytes that are found to be replicationally 

quiescent and many of these CLL B cells exist in G0 and G1 phase of the cell cycle. The CLL 

lymphocytes get accumulated in the lymph nodes, bone marrow, spleen and peripheral blood. 
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Circulating malignant CLL cells have been associated with dysfunctional apoptotic machinery 

thereby causing prolonged survival (44). Overall, genetic defects and the extrinsic signals from 

the tumor microenvironment both contribute to survival, proliferation and abnormal 

accumulation of CLL cells (45).  

There are genetic lesions such as deletions, translocations and polysomy in CLL which 

contribute to CLL pathogenesis, disease progression, poor prognosis and treatment outcome. 

First studies from Gahrton et al reported Trisomy 12 as a genetic abnormality which is 

associated with poor treatment outcome (46). Genetic aberrations in CLL include deletion of 

13q14, 6q21, 11q22.3, 11q23.1 and 17p13. Deletion of genetic region 17p13.1 is associated 

with loss of TP53 gene function and deletion of 11q22-23 is associated with loss of ATM gene 

function. These specific genetic deletions are strongly correlated with treatment outcome and 

poor patient survival. Furthermore, the most common genetic deletion at 13q14.3 is associated 

with loss of mir-15a and mir-16-1 (47). Loss of mir-15a and mir-16-1 regulate expression of 

anti-apoptotic proteins Bcl-2 and Mcl-1, thereby causing an overexpression of these two 

proteins.  

PI3Kδ in CLL and its relevance 

 The PI3K pathway is a critical component of cell survival in CLL. Initial studies 

determined the importance targeting the delta isoform of PI3K in CLL. Studies from Herman et 

al, first reported overexpression of PI3Kδ isoform in CLL patient lymphocytes compared to 

normal B cell lymphocytes (27). When compared to other PI3K isoforms, expression of PI3Kγ 

isoform was also evident, however essentially no PI3K α and β isoforms observed in CLL 

patient lymphocytes. Additionally, CLL cells had higher PI3K activity when compared to 

normal B cell, and this higher PI3K activity has also been reported previously (27). 
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Furthermore, Lannutti and other colleagues observed increased resting PI3K activity in CLL 

compared to normal B cells. These studies also extended downstream constitutive 

phosphorylation of AKT, suggesting the role of PI3Kδ in CLL and survival signals (13). These 

key findings provided a rationale for specifically targeting PI3Kδ in CLL.  

Bcl-2 anti-apoptotic family proteins 

Apoptosis is a cell death program that is extensively coordinated for normal cell biology 

however; defective apoptotic machinery is a hallmark feature in CLL (48). B-cell lymphoma 2 

(Bcl-2) family anti-apoptotic proteins are primarily responsible for abnormal survival and 

proliferation of malignant CLL cells. Bcl-2 family proteins play central roles in cell death 

regulation modulating diverse cell death mechanisms and alterations in their expression and 

function leads to pathogenesis (44,49). Of the 30 mammalian Bcl-2 family proteins, 14 are of 

human origin and are categorized into 3 different subclasses based on the structural and 

functional Bcl-2 homology BH domains (50).  

The first subclass of Bcl-2 family proteins is the anti-apoptotic proteins which include 

Bcl-2, Bcl-b, Bcl-xL, Bfl-1, Bcl-w, and Mcl-1 proteins. These six proteins mainly function as 

the inhibitors of the apoptosis pathway. There has been critical evidence for the vital functional 

role of these anti-apoptotic proteins. Bcl-2 protein maintains homeostasis of the adult B cell 

population in the peripheral blood (51). Bcl-xL protein is critically required for survival of the 

immature thymocytes (52). Studies also document the role of Bcl-w to be linked with sperm 

cells rather than lymphocytes (53). Mcl-1 has a unique role in cell physiology; it is critically 

essential for early embryonic development, survival of hematopoietic stem cells and 

lymphocytes as well as development of mature lymphocytes (54,55). In transgenic mice studies, 

over-expression of Mcl-1 induced B-cell lymphomas (56).  
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The second subclass of Bcl-2 family proteins is the multi-domain pro-apoptotic proteins 

Bax, Bak, and Bok. These proteins are involved in facilitating apoptosis pathway thereby 

inducing apoptosis. Bax and Bak activate apoptosis through mitochondrial outer membrane 

permeabilization (MOMP) process leading to release of the cytochrome c, activating the 

caspases cascade and cell death (57,58). Cells lacking Bax and Bak fail to undergo MOMP and 

apoptosis in response to many death signals (57). Expression of Bax protein in lymphocytes 

plays a key role in programmed cell death (59). In vivo studies have also demonstrated the role 

of Bak protein in B-cell homeostasis.  

The third subclass of Bcl-2 family consists of the BH3 only pro-apoptotic proteins. 

Among the 9 proteins in this group; Bim and Bid functions as the activators of the apoptosis and 

Bad, Bmf, Bik, Hrk, Bcl-rambo, Puma and Noxa function as sensitizers of apoptosis process. 

BH3 only pro-apoptotic protein, Bid, functions in cell maintenance of myeloid cells (60); while 

Bim protein plays a role in B-cells program cell death, both in memory and plasma B cells. In 

addition to BH3 only pro-apoptotic proteins having a prominent role in apoptosis, it’s been 

documented that several BH3-only proteins are involved in cell-cycle regulation, metabolism 

and DNA repair mechanisms (61,62).  

Overall, differential expressions of Bcl-2 family proteins orchestrate cellular death and 

survival signals. The new role of Mcl-1 has been explored and it is found to be associated with 

DNA damage and repair pathway.  

Role of Mcl-1 in DNA repair 

Mcl-1 has an extensive and a critical role in apoptosis and in CLL, however; several 

studies have demonstrated a new and unique role of Mcl-1 in DNA damage response and repair 
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mechanisms. Cells have an elaborate response to DNA damage and elicit DNA repair responses 

in order to protect genetic changes. To this date, mammalian cells have evolved to variety of 

mechanisms to reduce DNA damage. One of the mechanisms that is critical before the initiation 

of DNA repair process is growth-arrest of the cells following DNA damage. Another critical 

mechanism is cell death by apoptotic program in response to DNA damage. Studies have 

reported cytotoxic DNA damaging agents leading with an early apoptosis response leads to an 

enhanced expression of MCL1 gene in a p53-independent manner (63-66). More studies showed 

role of Mcl-1 linked to regulating cell cycle progression, partially mediated through 

proliferating cell nuclear antigen (PCNA), interactions with cyclin dependent kinase 1 (CDK-1), 

and ATR-dependent activation of checkpoint 1 protein (CHK-1) following DNA damage (67-

69). Overall, Mcl-1 is highly overexpressed in many human cancers, manipulated by malignant 

cells to escape apoptosis regulation and have further implications for its unique role in DNA 

damage response.  

Alkylating and DNA damaging agents in CLL 

For past several decades, alkylating agents are being used as front line therapy in CLL. 

Initially, chlorambucil, a nitrogen mustard compound, was considered gold standard for CLL 

therapy. Even today, chlorambucil therapy is used for elderly, unfit patient population. 

Cyclophosphamide is another alkylating agent that has been used in CLL for many years. 

Fludarabine, pentostatin, and cladribine have been used as purine analogues for CLL therapy. In 

the 1990’s, fludarabine was compared to chlorambucil in previously untreated CLL patients. In 

the front line treatment study, fludarabine resulted in higher response rates and longer duration 

of remission and progression-free survival compared to chlorambucil (70). Also, when assessed 

for better alkylating agent in combination, fludarabine and cyclophosphamide regimen was 
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preferred compared to fludarabine or chlorambucil (71). Overall, combination regimen of 

alkylating agents with purine analogues have enhanced anti-leukemic activity; resulting in better 

overall response rate and progression-free survival when compared as single agent treatment.  In 

recent years, rituximab, a chimeric anti-CD-20 monoclonal antibody had shown some efficacy 

in CLL however, combination with chemotherapy have proven to be very efficacious in CLL 

therapy. After rituximab, many other new generation antibodies have been tested as single agent 

or in combination. Several studies in the literature suggested that chemo-immunotherapy 

provided patients with improved overall and progression-free survival in CLL.   

Together, fludarabine, cyclophosphamide, and rituximab (FCR) combination makes the 

most effective regimen in CLL therapy. From the clinical studies with FCR regimen, the 

response rate achieved was 95%, with complete response rate of 72% and the median time to 

disease progression was 80 months (72). Since then, long-term study results extended up to 142 

months were just published (73).  

When bendamustine was introduced, it was compared to chlorambucil for toxicity and 

efficacy, and the overall response rate to bendamustine resulted in 68%, more than double the 

observed response rate to chlorambucil (74). 

Bendamustine  

Bendamustine is FDA approved for the treatment of CLL and indolent non-Hodgkin’s 

lymphoma (NHL). Bendamustine hydrochloride (TREANDA®, Cephalon, Inc) is an alkylating 

agent and for the treatment of CLL, it is administered intravenously for 30 minutes on days 1 

and 2 of a 28-day cycle, up to six cycles (National Cancer Institute).  
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Bendamustine was first synthesized in the 1960’s and was widely used in Europe, but it 

did not gain its FDA approval until 2008 (75). Bendamustine is an alkylating agent is 

efficacious in CLL therapy. Chemically, bendamustine is 4-(5-[bis(2-chloroethyl)amino]-1-

methyl-2-bezimidazolyl) butyric acid hydrochloride, as shown in the figure 4. Structurally, 

bendamustine contains an alkylating group (2-chloroethylamine), a benzimidazole ring and 

finally to enhance water solubility, a side chain of butyric acid was added (75). Functionally, the 

2-chloroethylamine represents a nitrogen mustard group responsible for the alkylating 

mechanism of the molecule. The nitrogen mustard group in bendamustine resembles previously 

used alkylating agents such as, chlorambucil and cyclophosphamide.  

Bendamustine primarily acts as an alkylating agent causing formation of intrastrand and 

interstrand cross-links within and between DNA strands. This feature of bendamustine generates 

DNA damage by inhibiting DNA replication, repair and transcription (76-78). DNA damage 

response initiates repair response and the cells repair the damage with minimal response. 

Notably, the CLL lymphocytes are characterized with an increased DNA repair ability (79,80).  

Alkylating agents and induction of CLL cell death 

 Among different damages elicited by alkylating agents, interstrand crosslinks are 

considered to be mainly responsible for apoptosis including death of quiescent CLL 

lymphocytes. Extent of DNA damage is primary lesion, followed by its maintenance and 

induction of DNA repair processes. Lesions are repaired by DNA repair assemblies and hence 

inhibition of these repair processes facilitates induction of cell death. Agents that inhibit repair 

processes such as purine nucleoside analog (fludarabine) result in increased damage with 

corollary increased cell death (81).  
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Figure 4.  
 

 

 

       

                         
 

 

 

 

Figure 4. Chemical structure of alkylating agent, bendamustine hydrochloride. 

  

Chemical structure of bendamustine obtained from the FDA website, 

http://www.accessdata.fda.gov 
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DNA alkylation and repair process 

Alkylating agents are one of the oldest classes of anticancer agents for treatment of 

cancer. Alkylating agents interact with nitrogen (N) and oxygen (O) atoms of DNA bases to 

generate a variety of covalent adducts; resulting in addition of simple methyl groups to complex 

alkyl groups (82). Bifunctional alkylating agents generally consist of two reactive groups that 

can chemically bond to separate DNA bases to form interstrand crosslinks. There are two major 

classes of bifunctional alkylating compounds for anti-cancer treatment; the nitrogen mustards 

and aziridine compounds, both of which are capable of crosslinking DNA through formation of 

aziridinium-ring intermediate (83). Bendamustine, chlorambucil and cyclophosphamide are all 

considered as nitrogen mustard compounds. These groups of alkylating compounds react with 

N7-guanine to form bulky N-monoadducts (84). Formation of these adducts interact with DNA 

bases to form guanine–guanine (G–G) and guanine–adenine (G–A) interstrand crosslinks (85). 

Following DNA alkylation damage response, complex repair responses are initiated with 

multiple enzymes and repair pathways. Major DNA damage repair mechanisms include; direct 

DNA repair with family of α-ketoglutarate dependent dioxygenous enzymes and DNA methyl 

transferase (MGMT) repair enzymes (86), as well as intricate pathways of base excision repair 

(BER) and nucleotide excision repair (NER) (87,88).  

Similar to DNA repair pathways, DNA damage recognition response is required to 

initiate downstream checkpoints to correct DNA damage. The DNA damage response is 

mediated by phosphoinositide 3-kinase-like kinase (PIKK) family members, Ataxia-

telangiectasia mutated (ATM), ATM and Rad 3-Related (ATR), and DNA-PK and by the 

proteins poly(ADP-ribose) polymerase (PARP) family (89,90). Once the DNA lesions are 

recognized, ATM and ATR phosphorylate multiple mediator proteins and substrates amplifying 
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the DNA damage response. These mediator proteins are either directly phosphorylated by 

ATM/ATR or by check-point kinase 1 (CHK1) and check-point kinase 2 (CHK2) kinases (89). 

In response to DNA damage, ATM and CHK2 are both regulated by p53. P53 induces 

apoptosis, cell-cycle arrest or senescence in response to DNA damage (91,92). Overall, there are 

multiple controlled pathways, mediators and sensors that respond to DNA damage signals and 

then coordinate DNA repair pathways or lead to cell-cycle arrest and apoptosis.  
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Idelalisib and bendamustine in combination: Rationale 

 PI3K pathway plays a pivotal role in many aspects of normal cellular biology and 

malignant tumor cells. This pathway is dysregulated in many solid tumors and hematologic 

malignancies. In CLL; oncogenic mutations, microenvironmental factors from BCR signaling, 

and constitutive activation of PI3K due to over-expressed PI3Kδ isoform drive malignant B-cell 

proliferation and survival. Given the importance of BCR and PI3K pathway, delta-specific 

isoform inhibition by idelalisib was tested and FDA approved for CLL. It inhibits BCR-derived 

survival signals and promotes apoptosis. In solid tumors, studies have demonstrated that 

inhibition PI3Kα/β isoforms leads to decrease in transcription in many cancer cells. 

Additionally, α/β isoform-specific inhibition promoted DNA damage response. CLL is also 

driven by many survival factors specifically, the anti-apoptotic proteins, Bcl-2 and Mcl-1. 

Studies have also elucidated the role of Mcl-1 in DNA damage and repair response. 

Bendamustine is a DNA-damaging alkylating agent FDA approved for CLL therapy.  

Specific Aims 

1. Analyze biological consequences and biomarkers impacted by idelalisib 

Investigate the biological consequences and biomarkers that are impacted by idelalisib 

treatment in primary CLL lymphocytes. Test the dose- and time- dependent effect on 

apoptosis and global RNA synthesis. Based on the RNA synthesis, evaluate the effect of 

idelalisib on transcript and protein expression of anti-apoptotic proteins, Mcl-1 and Bcl-

2. Investigate the downstream signaling protein expression impacted by idelalisib 

treatment. Finally, evaluate the effect of idelalisib treatment on DNA damage and repair 

response.    

2. Combination of idelalisib with bendamustine in CLL lymphocytes 
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Based on the rationale, investigate the biological consequences impacted by idelalisib 

and bendamustine in combination treatment. Furthermore, evaluate whether the 

combination treatment results in synergistic, additive or antagonistic interaction for 

cytotoxicity. Test the effect of combination treatment on Mcl-1 and Bcl-2 transcript and 

protein expression and whether there are any molecular changes that affect the DNA 

damage and repair response pathway in combination.  

3. Mechanism for combination effect of idelalisib and bendamustine  

To further elucidate the mechanism of the synergy with combination treatment, evaluate 

Mcl-1 deletion mouse embryonic fibroblasts (Mefs) with the WT Mefs in response to 

bendamustine and if bendamustine treatment in Mcl-1 deleted cells sensitizes cells to 

apoptosis.  

 

Hypothesis 

 We hypothesized that idelalisib treatment will impact transcriptional and translational 

changes; specifically RNA synthesis, short-lived anti-apoptotic proteins, and DNA damage and 

repair responses, leading to enhanced apoptosis of malignant CLL cells. Combination of 

idelalisib with bendamustine will lead to a synergistic cytotoxicity due to decrease in survival 

proteins and bendamustine-induced DNA damage that will sensitize CLL cells to apoptosis 

(Figure 5). 
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Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Hypothesis model for combination of idelalisib and bendamustine. 
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CHAPTER 2: Materials and methods 

Primary cells from CLL patients 

 Peripheral blood samples were obtained from CLL patients at MD Anderson Cancer 

Center after informed consents through institutional review board-approved protocols that were 

in agreement with Dr. William Wierda in the Leukemia Department. All patient characteristics 

are listed in Table 1. Peripheral blood mononuclear cells (PBMCs) were isolated from whole 

blood samples using the standard Ficoll-Hypaque (Invitrogen) density gradient centrifugation. A 

Coulter channelyzer counter (Beckman Coulter, Inc.) was used to determine the cell count and 

size for each experiment. Primary cells were cultured in RPMI-1640 medium with 10% 

autologous patient serum at the density of 10
7
 cells/mL during the experiments. Endogenous cell 

death levels were measured for experiments using flow cytometry, and only samples with less 

than 50% inherent cell death were used for experiments and drug treatments.  

Cell lines  

Mouse embryonic fibroblasts (Mefs), wild-type and Mcl-1 deficient cell lines were 

generously provided by Dr. Joseph T. Opferman at St. Jude Children’s Research Hospital. Both 

cell lines are Simian virus (SV40)-transformed and the cells were maintained in Dulbecco 

modified Eagle medium with L-glutamine (DMEM; Invitrogen) media supplemented with 10% 

fetal bovine serum (FBS; Invitrogen), Pen/Strep, L-Glut, and non-essential amino acids (NEAA; 

GIBCO). These cells are extensively confirmed by Dr. Opferman’s group as well as with 

Western blots. Cell lines were tested for Mycoplasma contamination using a MycoTect kit.  
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Table 1.  

Patient  Sex Age 

Prior 

Rx 

IGVH 

Mutation 

Status 

ZAP 

Status 

(FLOW) 

ZAP 

Status  

(IHC) 

RAI 

Stage 

 WBC 

(x10
3
/μL)  β2M 

Genetic 

Aberrations  

741 F 69 0 UNMUTATED ND POS 1 122.8 3 p53 

89 M 67 0 NR ND NEG 0 34.8 3.2 NEG 

778 F 54 0 MUTATED ND NEG 0 37.9 2.1 NEG 

637 M 69 7 UNMUTATED 2.5 POS 0 96.2 8.6 ATM 

527 M 78 0 NOT DONE POS ND 3 50.3 7.1 ATM 

10 F 76 1 MUTATED ND NEG 4 58.4 4.6 T12 

514 F 70 0 MUTATED 3.1 NEG 1 107.6 2.1 ND 

57 M 68 1 UNMUTATED ND POS 1 122.2 3.2 NEG 

785 M 55 6 UNMUTATED ND POS 1 40.3 3.2 ND 

455 M 57 1 UNMUTATED NEG POS 1 183.5 3.1 NEG 

327 F 73 0 MUTATED ND NEG 0 178.5 4.4 D13 

607 F 72 0 MUTATED ND NEG 1 92.8 2.8 NEG 

56 M 62 1 ND ND ND 2 42.7 2.1 ND 

81 F 68 0 MUTATED ND NEG 0 214.6 2.6 D13 

514 F 70 0 MUTATED 3.1 NEG 1 104.2 1.7 D13 

87 F 76 0 NR 1.76 ND 1 58.1 2.4 NEG 

592 F 60 0 MUTATED 2.65 ND 0 42.2 2 ND 

103 M 53 0 UNMUTATED ND POS 1 132 2.6 ATM 

419 M 73 5 NR ND POS 4 122.9 10.8 ATM 

189 M 64 0 UNMUTATED ND POS 1 92.7 2.7 ATM 

661 M 62 0 MUTATED ND NEG 0 22 2.2 D13 

525 F 64 0 MUTATED NEG 

NEG & 

POS (2 

CLONES) 0 160.3 2.2 NEG 

345 F 52 0 MUTATED 36.1 POS 1 21.8 21.8 D13 

424 M 74 1 MUTATED ND POS 4 61.9 3.9 D13 

516 F 75 1 MUTATED 1.8 ND 2 120.5 2.1 D13 

944 M 55 0 NR ND NEG 4 29.3 2.3 T12 

267 F 49 0 MUTATED ND NEG 0 37.2 1.2 D13 

247 F 67 0 MUTATED 2.02 ND 0 118.4 2.1 D13 

109 M 61 1 UNMUTATED ND POS 1 131.4 3.1 NEG 
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Table 1 continued. 

Patient  Sex Age 

Prior 

Rx 

IGVH 

Mutation 

Status 

ZAP-70 

Status 

(Flow) 

ZAP-70 

Status  

(IHC) 

RAI 

Stage 

 WBC 

(x10
3
/

μL)  β2M 

Genetic 

Aberrations  

973 M 78 3 MUTATED 1.5 ND 0 49.5 2.4 ND 

68 M 93 2 UNMUTATED 30.9 POS 3 224.9 20.8 D13 

773 M 48 0 MUTATED ND POS 2 77.7 4.7 D13 

112 M 59 0 UNMUTATED POS POS 0 27.6 1.3 T12 

781 M 72 3 UNMUTATED ND NEG 1 96.1 3 ATM 

969 M 69 0 UNMUTATED ND POS 1 241.5 4.1 ATM 

599 M 84 0 MUTATED NEG ND 0 20.7 2 D13 

607 F 72 0 MUTATED ND NEG 0 95.9 2.8 NEG 

85 F 65 6 NR ND NEG 4 121.8 9.3 D13 

654 M 57 1 UNMUTATED ND POS 0 67.3 2.8 p53 

820 F 59 0 UNMUTATED ND POS 1 72.3 2 T12 

417 M 42 0 MUTATED 1.09 ND 2 157.5 2.5 ND 

841 F 62 1 UNMUTATED ND POS 3 286.8 4.8 ND 

79 F 59 0 UNMUTATED NEG ND 1 77.7 2.1 ATM 

252 M 60 0 UNMUTATED ND NEG 1 29.2 3.3 D13 

354 M 70 2 UNMUTATED ND ND 1 101 6 ND 

516 F 75 1 UNMUTATED 1.8 ND 2 125 3 D13 

79 F 59 0 UNMUTATED NEG ND 1 73.6 2.5 ATM 

606 M 61 1 UNMUTATED 10.8 ND 0 19 2 ND 

203 M 66 1 NR ND POS 4 123.8 3.7 ATM 

14 M 72 0 NR POS ND 1 30.3 2.6 ND 

90 M 68 0 MUTATED ND POS 4 117.7 3.3 D13 

785 M 66 0 NR ND NEG 3 134.1 7 p53 

653 M 66 0 UNMUTATED POS ND 2 114.9 5.4 D13 

33 M 68 0 UNMUTATED ND POS 0 111.9 3.8 T12 

758 M 49 0 MUTATED ND ND 0 46.1 1.4 D13 

827 F 72 0 MUTATED ND NEG 1 41.5 2.6 D13 

294 M 68 0 UNMUTATED ND NEG 0 21.8 2 p53 

599 M 84 0 MUTATED NEG NEG 3 20.5 3.2 D13 

            

Table 1. CLL patient characteristics. 

Key: Prior Rx – Prior treatment; IgVH – Immunoglobulin Variable Heavy Cluster; 

ZAP70 – Zeta-Chain (TCR) Associated Protein Kinase 70kda; WBC – White Blood Cells; 

ND – Not Determined; ATM – Ataxia Telangiectasia Mutated; T12 – Trisomy 12; D13 – 

Deletion 13q14.3 
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(Invitrogen). All experiments were conducted in cell passages less than 15 and were maintained 

at a logarithmic growth concentration between 10
5
 cells/mL and 10

6
 cells/mL with 80% 

confluency as determined by a Coulter channelyzer with less than 10% endogenous cell death 

confirmed by flow cytometry.  

Drugs 

Idelalisib (formerly known as GS-1101 or CAL-101) was provided by Calistoga 

Pharmaceuticals (now Gilead Sciences, Inc.). Bendamustine hydrochloride was originally 

obtained from Cephalon (now Teva Pharmaceuticals Industries, Ltd.) and was later purchased 

from Selleckchem, USA. Idelalisib was shipped in a powder form and was dissolved in 

dimethyl sulfoxide (DMSO); stock solutions were made at 100 mM concentrations and stored in 

-80˚C. Bendamustine hydrochloride was dissolved in DMSO and stock solutions were made at 

30 mM concentration and stored in -80˚C. 

In our study, both drugs were used in micromolar concentrations and the highest 

concentration for idelalisib was 10µM and 30µM for bendamustine hydrochloride. These 

concentrations were chosen based on reported plasma concentrations (27,34,75,77,81). 

Idelalisib has greater than 84% of the drug bound to human plasma proteins(34).  

Apoptosis assays 

Primary cells were treated with DMSO alone or with drugs, then10
5
 cells per experiment 

were washed with PBS and then incubated with Annexin V (BD Pharmingen) followed by 

propidium iodide (PI) along with the Annexin binding buffer. After 15 minutes incubation, 

Annexin/PI positivity for cell death was measured using FACS Caliber flow cytometer (BD 

Biosciences). For WT and Mcl-1-/- Mefs, cells in the supernatant and in the attached cells 
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(removed by Accutase; Sigma) were incubated with Annexin V followed by PI and the Annexin 

binding buffer were then used to measure cell death on flow cytometer.  

Macromolecule synthesis assays 

 Primary cells from CLL patients were incubated with [5,6- 
3
H]-uridine (1.0mCi/mL 

stock; Moravek Biochemicals) for 30-45minutes for each experiment. 10
6
 cells from primary 

samples were plated in 12-welled plate and each treatment was done in triplicate. 4mCi/mL of 

radioactive nucleoside was used for primary samples. The incorporated radioactivity was used 

to measure RNA synthesis using a Packard Tri-Carb liquid scintillation analyzer (GMI, Inc 

Perkin Elmers).   

Gene expression assays 

 Total RNA from primary cells was extracted using the RNAeasy mini kit (Qiagen N.V.). 

NanoDrop ND 1000 spectrophotometer (Thermo Fisher Scientific) was used to quantify RNA. 

RNA extract was diluted to a desirable concentration of 50ng/mL for target genes and for 18S 

housekeeping control gene, and then assayed with a 1-step TaqMan reverse transcription 

polymerase chain reaction (RT-PCR) master mix (Applied Biosystems). Gene expression levels 

were measured with an ABI prism 7900 sequence detection systems (Applied Biosystems). 

Primers and probes for MCL1 (Hs0172036_m1), BCL2 and 18S (4333760) (Applied 

Biosystems) were used to detect the expression levels of the corresponding genes. Each 

treatment and experiment was performed in triplicate and the relative gene expression levels 

were normalized to 18S, a housekeeping control.  
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Immunostaining for γH2AX 

 Post-treated primary CLL cells (5x10
6
 cells) were washed twice with PBS and then fixed 

with ice-cold 70% ethanol overnight at 4˚C or for longer storage in -20˚C. Ethanol was removed 

by centrifugation and then cells were washed twice with PBS and twice with PBS with 1% 

bovine serum albumin (BSA) and blocked with 1% BSA. After blocking, cells were incubated 

with primary phospho-Histone 2AX (Ser139) or γH2AX antibody (EMD Millipore) for 2hr at 

room temperature with gentle shaking. After incubation, cells were washed three times with 

PBS with 0.5% BSA and cells were incubated with FITC-labeled IgG secondary antibody for 

1hr at room temperature protected from light followed by three washes with PBS with 0.5% 

BSA. Cells were then co-incubated with 10 µg/mL PI and 2.5 µg/mL DNAse-free RNAse for 30 

mins at room temperature. The samples were analyzed by flow cytometry and compared to the 

baseline, an upward shift of the florescent signal was gated as percent positive for DNA 

damage.  

Protein expression assays with immunoblots 

 Control (untreated) and drug-treated primary CLL cells were lysed using a 

radioimmunoprecipitation assay buffer (RIPA; Upstate Biotechnology) and sonication to collect 

lysates. The protein concentration was measured using Bio-Rad DC protein assay (Bio-Rad 

Laboratories). Total prepared protein lysates (30-50µg) were loaded into 10% or 4-12% gradient 

bis-tris polyacrylamide gels (Bio-Rad Laboratories) and transferred to nitrocellulose membranes 

(Bio-Rad Laboratories), followed by overnight (4˚C) probe with target-specific primary 

antibodies. Membranes were washed three times with PBS-tween (0.1%) from the primary 

antibody and then incubated with infrared-labeled secondary antibodies for 1 h at room 

temperature, and then the protein bands were visualized and quantitated using an Odyssey 
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infrared imager (LI-COR Biosciences). Table 2 lists antibodies name and source that were used 

in the project.  

Data analyses 

 All plotted graphs were prepared and analyzed using Graphpad Prism software version 5 

(San Diego, California).  Primary cells and cell lines data were performed at least in triplicates 

(more n’s for patient samples) and cell line data was presented as mean value +  standard error 

of the mean (SEM). For each drug treatments, DMSO was used as a vehicle control. Single drug 

treatment experiments compared to the DMSO control, were analyzed by the Student paired, 2-

tailed t-test. For combination drug treatment study, fractional analysis was used to determine if 

the combination methods lead to less than, equal to or more than the additive effect on induction 

of apoptosis (Calcusyn Software, Chou-Chou Talalay method) (93). Phosphorylated and total 

protein expression levels detected by immunoblots were quantified using Odyssey software for 

the Odyssey Infrared Imaging System (LI-COR Biosciences), and then normalized to the 

DMSO control. For immunoblot analyses, a ratio of phosphorylated protein to the total protein 

level was calculated for the phosphorylated proteins, and the ratio of protein to GAPDH level 

was done for total protein targets.  
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Table 2. 

 Primary Antibodies Company Source 

1 Mcl-1  Santa Cruz Biotechnology, Santa Cruz, CA 

2 Bcl-2 Dako, Carpinteria, CA 

3 Phospho-H2AX  (Ser139) EMD Millipore, Billerica, MA 

4 Total H2AX  EMD Millipore, Billerica, MA 

5 GAPDH Cell Signaling Technology, Beverly, MA 

6 Phospho-ATM (Ser1981) EMD Millipore, Billerica, MA 

7 Total ATM Abcam, Cambridge, MA 

8 Phospho-p53 (Ser15) CS9284  Cell Signaling, Danvers, MA 

9 Total p53 EMD Chemicals, Gibbstown, NJ 

10 Phospho-GSK3β (Ser9) CS9336 Cell Signaling, Danvers, MA 

11 Total GSK3β CS9315 Cell Signaling, Danvers, MA 

12 Mcl-1 CS5453 Cell Signaling, Danvers, MA 

13 Phospho-AKT (Ser473) CS9271 Cell Signaling, Danvers, MA 

14 Total AKT Cell Signaling, Danvers, MA 

15 Phospho-Chk2 (Thr68) CS2661 Cell Signaling, Danvers, MA 

16 Total Chk2 SC5278 Santa Cruz, Biotechnology, Santa Cruz, CA 

 

Table 2. Antibodies Source 
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CHAPTER 3: Results 

Aim 1: Analyze biological consequences and biomarkers impacted by idelalisib 

 

1.1 Idelalisib treatment induced dose-dependent apoptosis in CLL lymphocytes 

To investigate the biological effect of idelalisib in primary CLL cells, we isolated 

malignant PBMCs from peripheral blood of patients with CLL. These cells were used fresh for 

all investigations. Primary cells were treated with DMSO (served as a control) or varying doses 

of idelalisib (0.5, 1, 3, 5, 10 µM) for 24 h. These doses were selected based on literature review 

and company recommendations.  Extent of apoptosis was measured using flow cytometry and 

was compared with the control. Generally in control (DMSO treated), there was 1 and 3% cell 

death. This percent increased in a dose-dependent manner after 24 h treatment with idelalisib, as 

seen in figure 6. Each graph represents percent Annexin/PI positive cell death observed in these 

CLL patient lymphocytes (n=16 for 24 h). 

1.2 Idelalisib treatment induced time-dependent apoptosis in CLL lymphocytes 

To determine if the cell death was further enhanced after long-term treatment with 

idelalisib, CLL PBMCs from 3 different patients were treated with 5 µM of idelalisib for 24, 48, 

and 72 h and cell death was measured using flow cytometry (Figure 7). % Annexin/PI positive 

cells, normalized to DMSO control for each patient samples were 23, 24, and 22 at 24 h, 35, 30, 

and 46 at 48 h, and 48, 55 and 52 at 72 h. We observed time-dependent increase in apoptosis 

ranging from 10-30% from 24 h to 72 h. These data suggest that overall with idelalisib there 

was only modest cell death of CLL lymphocytes.  
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Figure 6.  

 

 

 

 

 

 

 

 

 

     

Figure 6.  Induction of dose-dependent apoptosis by Idelalisib treatment in primary CLL 

cells measured by Annexin V/PI assay. 

CLL PBMCs isolated from blood samples of patients were either treated with DMSO vehicle 

control or different doses of idelalisib (0.5, 1, 3, 5, 10 µM) for 24 h. The cells were then 

harvested and then stained with Annexin V for 15 mins followed by 5 mins of PI. Apoptosis for 

each treatment was measured using flow cytometry; the apoptotic cells population was indicated 

in the upper right and lower right quadrants. Dose response experiments were performed in 16 

CLL patients (CLL516, 944, 267, 109, 781, 973, 056, 741, 089, 778, 637, 527, 785, 455, 327, 

and 419). The graph represents percent Annexin/PI positive cells.  
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Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Induction of time-dependent apoptosis by idelalisib treatment in primary CLL 

cells measured by Annexin V/PI assay. 

Time-dependent Annexin-V/PI positivity was measured by idelalisib in primary CLL cells 

treated with DMSO control or 5 µM idelalisib for different time points (24, 48, 72 h), stained 

with Annexin V/PI  followed by measuring the apoptosis levels on flow cytometry. Time-

dependent experiments were performed in 3 patients (CLL514, 087, 592).  
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1.3 Effect of idelalisib treatment on global RNA synthesis 

 Previous studies have demonstrated that inhibition of PI3K α and β isoforms result in a 

decrease in transcription. To assess if idelalisib, a PI3Kδ inhibitor, will have a similar response, 

primary CLL cells were treated with DMSO control or 5 µM of idelalisib for 24 h. During the 

last 30 mins of incubation (prior to harvesting cells), radioactively-labeled uridine was added for 

incorporation into the newly synthesized RNA. The incorporated radioactivity was measured 

using scintillation counter and the results were measured as DPM/cell, and then normalized to 

the DMSO control.  

 The graph in figure 8 represents four patient sample data points at 24 h after treatment 

with 5 µM idelalisib. In control (DMSO treated only) samples, the RNA synthetic capacity 

varied and was between 0.002 and 0.005 dpm/cell. Treatment with idelalisib significantly 

reduced RNA synthesis capability in these CLL patient lymphocytes, ranging between 0.001 

and 0.002 dpm/cell. The observed decrease with idelalisib treatment in RNA synthesis, when 

normalized to DMSO control, ranges between 47% and 71%. Results from these 4 patient 

samples were analyzed using paired 2-tailed student’s t-test.  

1.4 Effect of idelalisib on anti-apoptotic gene expression levels  

 Given that idelalisib treatment decreases RNA synthesis in CLL lymphocytes, short-

lived mRNA expression levels may also be affected. CLL cells have a malfunctioning apoptotic 

response and the Bcl-2 family anti-apoptotic proteins mainly contribute for abnormal CLL cell 

proliferation and survival.  
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Figure 8.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Inhibition of global RNA synthesis by idelalisib in primary CLL cells.  

CLL PBMCs isolated from patient samples were treated with DMSO or with 5 µM idelalisib for 

24 h. The cells were co-incubated with [5,6-
3
H]-uridine for 30 mins before harvesting, then the 

amount of radioactivity incorporated into cells was measured using a scintillation counter. 

DPM/cell was calculated and normalized to DMSO control. Experiments from 4 patient samples 

(CLL081, 057, 327, 455) were done in triplicates. A Student’s paired 2-tailed t-test was 

performed for these patient samples.  
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Activation of the BCR pathway also contributes to cell maintenance, proliferation and survival. 

Previous studies have shown that Mcl-1, a critical component in the survival pathway, is up-

regulated in CLL cells and plays a role in patient prognosis and treatment outcomes. Therefore, 

we assessed the effect of idelalisib on mRNA expression levels of MCL1 and BCL2. CLL 

PBMCs were either left unstimulated or stimulated with IgM for BCR pathway activation, then 

treated with DMSO control or 5µM of idelalisib for 24 h.  Post 24 h treatment, cells were 

harvested and total RNA was extracted for real time RT-PCR experiment. 

Our data in figure 9 show that without any IgM stimulation, idelalisib-treatment results 

in a significant 30% decrease in MCL1 gene expression compared to DMSO control. CLL 

PBMCs with IgM stimulation alone increased MCL1 gene expression by 40% when compared 

to unstimulated DMSO control. Interestingly, combination of IgM stimulation with idelalisib 

treatment resulted in 28% decrease in MCL1 gene expression. 

Bcl-2 is another anti-apoptotic protein known to be up-regulated in CLL and plays a 

major role in CLL proliferation and survival.  Our results in figure 9 show no changes in the 

BCL2 gene expression without IgM stimulation and idelalisib treatment in the CLL cells. There 

was a modest increase in BCL2 mRNA levels when the CLL cells were stimulated with IgM 

alone. Combination of IgM and idelalisib did not have any significant changes in the BCL2 gene 

expression levels. The results in the figure represent 8 different patient samples and were 

analyzed by 2-tailed paired student’s t-test.  
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Figure 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Decline of MCL1 mRNA gene expression levels with no changes in BCL2 gene 

expression levels by idelalisib treatment in primary CLL cells.  

Primary cells were either untreated or stimulated with 10 µg/ml IgM for 30 mins. Following the 

stimulation, cells were treated with DMSO or 5 µM idelalisib for 24 h. Cells were harvested and 

total RNA was extracted and quantified. Isolated RNA was analyzed by real-time RT-PCR with 

primers and probes for MCL1 and BCL2 mRNA transcripts. MCL1 and BCL2 gene expression 

levels were measured and normalized to the 18S endogenous control and each experiment was 

normalized to the DMSO control in the experiment. The results are shown for 8 patient samples 

(CLL075, 483, 454, 293, 068, 354, 653, and 516).  
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1.5 Effect of idelalisib on anti-apoptotic protein expression levels  

Our observation includes decrease in global RNA synthesis, decrease in Mcl-1 mRNA 

transcript levels and an overall modest cell death with idelalisib treatment. We further 

investigate the changes of anti-apoptotic protein levels following idelalisib treatment. To 

evaluate changes of the Mcl-1 and Bcl-2 protein expression levels, CLL cells were treated with 

5 µM of idelalisib or DMSO for 24 h and 48 h. Mcl-1 and Bcl-2 protein levels were measured 

by immunoblots and normalized to GAPDH compared to DMSO. Immunoblots in figure 10 

show a dramatic decrease in Mcl-1 protein levels with idelalisib treatment at 24 and 48 h.  

Compared to GAPDH, Bcl-2 protein levels showed no changes with idelalisib treatment at 24 h 

and 48 h. Overall, Mcl-1, a survival factor in CLL, is significantly decreased by idelalisib both 

at transcript and protein levels and  no significant changes in the Bcl-2 transcript and protein 

levels were observed. 

1.6 Effect of idelalisib on downstream signaling protein expression levels  

BCR signaling pathway plays an important role in CLL. BCR signaling kinases such as 

PI3K delta amplify signals and induce survival and proliferation in CLL cells through the 

activation of downstream kinases such as MAPK, PI3K/AKT and NF-κB signaling pathways. 

These signaling events are either amplified due to over-expression or have constitutive 

activation of these kinases. To investigate the effect of idelalisib on signaling proteins 

downstream of PI3Kδ, we analyzed the phosphorylation of AKT, GSK3β and Mcl-1 levels. 

CLL PBMCs were either left untreated or stimulated with IgM for 30 mins followed by 

treatment with DMSO or 5 µM of idelalisib. We measured phosphorylation and total protein 

levels at 0, 0.5, 1, 2, and 24 h.  
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Figure 10.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Decrease of Mcl-1 protein expression level, with no changes to the Bcl-2 protein 

expression level by idelalisib treatment in primary CLL cells.  

Primary cells were either untreated or stimulated with 10 µg/ml IgM for 30 mins and then 

treated with 5 µM of idelalisib (I) for different times (0, 0.5, 2, 24 h). Cells were harvested and 

protein lysates were analyzed using immunoblots to detect the protein expression levels for Mcl-

1 and Bcl-2. GAPDH was used as control for equal protein loading. Quantitation for the 

immunoblots for each patient sample was performed by measuring the ratios of Mcl-1 or Bcl-2 

to GAPDH for idelalisib treated samples, and then normalized to DMSO.    
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Notably, inhibition of PI3K delta by idelalisib decreases phospho-AKT (Ser473) protein 

expression levels in a time-dependent manner, compared to the total AKT levels in these CLL 

patient cells in figure 11. Although, given patient heterogeneity, there were variable levels of 

phospho-protein expression levels observed. 

Downstream of PI3K/AKT activation, GSK3 phosphorylation is reported to regulate 

Mcl-1 stability directly. Mcl-1 protein has a short half-life, with rapid induction and destruction 

of Mcl-1 and this is proposed by several mechanisms.  Therefore, we wanted to investigate if 

there was a direct relationship of GSK3β and phospho-Mcl-1 activity that would lead to 

decrease in total Mcl-1 protein levels. Interestingly, we detected variable expression levels of 

phospho-GSK3β and total GSK3β protein with or without idelalisib treatment and IgM 

stimulation (figure 11). Similarly, compared to the total protein, phospho-Mcl-1 

(Ser159/Thr163) revealed variable protein expression with or without idelalisib treatment and 

no significant changes in these CLL patients were observed, data not shown (n = 3).  

1.7 Effect on DNA damage marker γH2AX by idelalisib in CLL lymphocytes  

There have been brief reports in the literature that suggests inhibition of PI3K α and β 

isoforms result in changes in the DNA damage responses. DNA damage response can be 

initiated with variety of stress signals in physiological processes. To evaluate if PI3Kδisoform 

inhibition by idelalisib would impact in any damage response, CLL PBMCs from 6 different 

patient samples were either treated with DMSO or 5 µM idelalisib for 24 h. Post treatment, cells 

were harvested and we performed immuno-staining of CLL cells to analyze changes in the 

levels of phospho-Histone 2A variant X (H2AX) at Ser139, also known as γH2AX.   As shown 

in Figure 12, in the DMSO control, there was 1-3 % H2AX phosphorylation observed by flow 

cytometry. Interestingly, after idelalisib-treatment, in each patient sample there was an increase 
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between 2-8% in γH2AX. Our results demonstrate that inhibition of PI3K delta isoform by 

idelalisib induces modest increase in the DNA damage response marker. These 6 patient 

samples concluded in a significant increase in DNA damage response with idelalisib treatment 

when compared to vehicle control and the samples were analyzed by paired 2-tailed student’s t-

test. 
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Figure 11.  

 

 

 

 

 

 

 

 

  

 

Figure 11.  Effect on downstream signaling proteins by idelalisib treatment in primary 

CLL cells.  

Primary cells were either untreated or stimulated with 10 µg/mL IgM for 30 mins and then 

treated with 5 µM of idelalisib for different times (0h, 0.5h, 1h, 2h, 24h). Cells were harvested 

and protein lysates were analyzed using immunoblots to detect the protein expression levels for 

phospho-AKT (Ser473), phospho-GSK3β (Ser9) and phospho-Mcl-1. GAPDH was used as 

control for equal protein loading. Quantitation for the immunoblots for each patient sample was 

performed by measuring the ratios of phospho- to total proteins for idelalisib treated samples, 

and then normalized to DMSO.   
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Figure 12.  

 

 

 

 

 

 

 

 

 

Figure 12. Idelalisib treatment induces γH2AX expression in primary CLL cells. 

Primary cells were either treated with DMSO control or with 5 µM of idelalisib for 24 h. The 

cells were then harvested and fixed with 70% ethanol overnight. Cells were then washed with 

PBS and then incubated with 0.5% goat serum for 1 h, then probed with the primary antibody 

phospho-histone H2AX (Ser139) or γH2AX (1:500) for 2 h. Cells were washed and then co-

incubated with 10µg/mL propidium iodide and 2.5 µg/mL DNAse-free RNAse for 15 mins. 

Cells were analyzed for fluorescence signal on flow cytometry for DNA damage response. 

Fluorescence-positive cells were marked as γH2AX positive treated cells. The figure represents 

6 CLL patients (CLL081, 514, 455, 327, 137, and 103).  

 

 

 

%


H
2

A
X

D M S O I  

0

1

2

3

4

5

6

7

8

* p < 0 .0 1 3  2 4  h

I =  Ide la lis ib  5  M

*



www.manaraa.com

44 
 

Aim 2: Explore combination strategy of idelalisib with bendamustine in CLL 

 Bendamustine, an alkylating agent, is a FDA-approved drug for NHL and CLL. 

Bendamustine induces DNA damage response by disruption of DNA replication and 

transcription processes evident in both replicating and in quiescent cells. Our studies in CLL 

have demonstrated that idelalisib-induced cytotoxicity is modest in CLL and it targets 

transcriptional and translational changes as well as it leads to DNA damage response, leading to 

cell death of the malignant CLL cells.  Based on bendamustine-induced DNA damage along 

with idelalisib-mediated cytotoxicity, we hypothesize that the combination of the treatment 

would enhance DNA damage in CLL cells and will further result in a synergistic cytotoxicity in 

malignant CLL cells.  

2.1 Effect on apoptosis induction by idelalisib treatment in combination with 

bendamustine in primary CLL samples  

 To test this hypothesis, we used 5 µM of idelalisib and 20 µM bendamustine. Idelalisib 

concentration was selected based on the single agent data in CLL cells as previously described. 

Bendamustine concentration of 20 µM was selected because it is a clinically relevant dose, 

easily achieved in plasma at tolerated dose (74,75,77).  

 CLL PBMCs in figure 13 were treated with DMSO, 5 µM idelalisib, 20 µM 

bendamustine or combination of both (5 + 20 µM)  for 24 h. Cells were harvested, washed with 

PBS and then stained with Annexin V/PI, and the levels of apoptosis were measured by flow 

cytometry. The histogram in figure 13 represents induction of apoptosis indicated by the 

increasing number of cells in the lower and upper right quadrants paired with decreasing 

number of cells in the lower and upper left quadrants. Percentages of apoptotic cells resulting 

from each drug at its concentration and the combination are shown. When normalized to DMSO  
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Figure 13. 
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Figure 13. Increase of apoptosis with idelalisib treatment in combination with 

bendamustine in primary CLL cells measured by Annexin V/PI assay. 

Primary cells were treated with DMSO, 5 µM of idelalisib, 20 µM of bendamustine, and then 

combination of idelalisib and bendamustine (5 µM + 20 µM, respectively). Cells were harvested 

and then stained with Annexin V for 15 mins followed by 5 mins of PI. The levels of apoptosis 

for each treatment was detected using flow cytometry and the apoptotic cells were indicated by 

the cell population present in the lower right, upper right, and upper left quadrants.  
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control, single agent treatment with idelalisib alone induced 5% cell death, bendamustine alone 

induced 11% and the combination of both drugs induced 28% cell death.  At this dose 

concentration, there was enhanced apoptosis observed in combination when compared to single 

agent treatment.  

2.2 Dose-dependent induction of apoptosis by combination treatment of idelalisib with 

bendamustine  

To further evaluate apoptosis in combination, we performed a dose response experiment 

with varying dose as single agent and in combination. CLL PBMCs were treated with DMSO,  

0.5, 1, 3, 5,  and 10 µM of idelalisib, 5, 10, 15, 20 and 30 µM of bendamustine and then in 

combination 0.5+5, 1+10, 3+15, 5+20, and 10+30 µM  of idelalisib and bendamustine, 

respectively. Cells were harvested, washed with PBS and then stained with Annexin V/PI, and 

the levels of apoptosis were measured by flow cytometry. Results in Figure 14 are separated 

into 3 graphs and represents 9 different CLL patients at 24 h treatments. Each colored symbol 

represents a different patient at a given dose concentration. 

Idelalisib treatment as a single agent induced dose-dependent apoptosis; at 0.5 µM, cell 

death ranged 1-9%, at 1 µM cell death ranged 1-14%, at 3 µM cell death ranged 2-13%, at 5 µM 

cell death ranged 2-16%, and finally at 10 µM cell death ranged 6-16%.    

Similarly, bendamustine treatment as a single agent induces dose-dependent apoptosis; 

at 5 µM cell death ranged 1-6%, at 10 µM cell death ranged 1-7%, at 15 µM cell death ranged 

1-13%, at 20 µM cell death ranged 5-20%, and finally at 30 µM cell death ranged 7-33%.  

Combination of idelalisib and bendamustine in non-constant ratios of concentrations 

showed an enhanced apoptosis in a dose-dependent manner in these malignant CLL cells. %  
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Figure 14. 
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Figure 14. Increase of apoptosis with idelalisib treatment in combination with 

bendamustine in primary CLL cells measured by Annexin V/PI assay. 

Primary cells were treated with DMSO, idelalisib (0.5, 1, 3, 5, or 10 µM), bendamustine (5, 10, 

15, 20 or 30 µM) and then combination of idelalisib and bendamustine (0.5+5, 1+10, 3+15, 

5+20, 10+30 µM respectively) for 24 h. Cells were harvested and then stained with Annexin V 

for 15 mins followed by 5 mins of PI. The levels of apoptosis for each treatment was detected 

using flow cytometry and the apoptotic cells were indicated by the cell population present in the 

lower right, upper right, and upper left quadrants. Each color shape represents a CLL patient 

sample, showing 9 CLL patient samples (516, 944, 267, 109, 973, 781, 247, 661, and 112). 
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Annexin/PI positivity with 0.5+5 µM I+B ranged 4-13%, 1+10 µM ranges 7-23%, 3+15 µM 

ranged 11-26%, 5+20 µM ranged 16-36%, and finally 10+30 µM of the combination treatment 

ranged between 23-49%. Overall, given patient heterogeneity, idelalisib and bendamustine 

induced dose-dependent apoptosis and this effect was enhanced in combination treatment.  

2.3 To evaluate the combination index of idelalisib treatment in combination with 

bendamustine  

From figure 14, extensive dose responses of the two drugs are given and we wanted to 

further investigate whether this combination study results in synergistic interaction between 

idelalisib and bendamustine. Combination of idelalisib with bendamustine resulted in enhanced 

apoptosis when compared to single agents alone.  Drug combination studies and their synergy 

quantifications are widely used to achieve therapeutic effect, reduce dose and toxicity, and 

minimize drug resistance. The apoptotic population from the combination treatment was used 

for fractional analysis. Calcusyn software was used for an output of the combination index given 

by the fraction affected with the non-constant ratios of the drugs. A combination index (CI) of 

less than 0.8 is indicative of strong synergistic interaction of the drugs; CI between the range of 

0.8 and 1.2 is additive, and CI greater than 1.2 is considered as an antagonistic drug interaction 

(93).  

Combination index of five dose ratios are shown in figure 15 (0.5+5, 1+10, 3+15, 5+20, 

and 10+30 µM) and except for one CLL patient, all the combination ratios indicate a strong 

synergistic interaction of idelalisib and bendamustine. At lower combination concentrations of 

the drugs, one CLL patient showed an antagonistic (0.5+5 µM) and two CLL patients showed 

an additive interaction (1+10 µM). Overall, CI values from 9 different patients suggest the  
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Figure 15.  

 

 

Combination Index > 1.2 is Antagonism 

Combination Index 0.8 < x < 1.2 is Additive 

Combination Index < 0.8 is Synergism  

 

Figure 15. Evaluation of the combination index of idelalisib and bendamustine in 

combination treatment in primary CLL cells.  

The apoptotic population from the combination treatment was used for fractional analysis. The 

Calcusyn software was used for an output of the combination index calculated by the fraction 

affected and the non-constant ratios of the drugs. A combination index (CI) of less than 0.8 is 

indicative of synergistic interaction of the drugs, CI between 0.8 and 1.2 is additive, and CI 

above 1.2 is antagonistic drug interaction.  
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combination of idelalisib with bendamustine resulted in enhanced toxicities and synergistic 

interaction.   

2.4 Effect on anti-apoptotic gene expression levels by idelalisib and bendamustine 

combination treatment  

Our data strongly suggests that combination of idelalisib with bendamustine results in 

synergy. We next investigated the mechanism of synergy resulting from idelalisib and 

bendamustine treatments. Mcl-1 is a survival factor in CLL and it is known to be highly up-

regulated in CLL. Findings from literature suggest a decrease in Mcl-1 radio-sensitizes cells and 

promotes cell cytotoxicity. Further evidence shows Mcl-1 involved in DNA damage and repair 

response. Taken together, we hypothesize that decrease in Mcl-1 by idelalisib may sensitize 

CLL cells to bendamustine and promote toxicity of the malignant cells. 

 To test the effect of idelalisib and bendamustine on short-lived mRNA expression 

levels, we carried out experiments to analyze the change of MCL1 gene levels with combination 

effect. CLL PBMCs were either left untreated or stimulated with IgM for 30 mins, followed by 

treatments with DMSO control, 5 µM idelalisib, 20 µM of bendamustine, and combination of 

both at these concentrations. Post 24 h treatment, cells were harvested and total RNA was 

extracted for real time RT-PCR experiment.  

Figure 16 shows CLL cells without IgM stimulation, idelalisib treatment resulted in a 

decrease in 30% MCL1 gene expression compared to DMSO. Combination of idelalisib with 

bendamustine also resulted in decrease in MCL1 gene expression.  

Similarly, when CLL cells were stimulated with IgM and then treated with DMSO, 

idelalisib, and bendamustine, and combination of both with same concentrations, the results  
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Figure 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Effect of idelalisib and bendamustine combination treatment on MCL1 gene 

expression in primary CLL cells.  

Primary cells were either untreated or stimulated with 10 µg/mL IgM for 30 mins. The cells 

were then treated with DMSO, 5 µM of idelalisib (I), 20 µM of bendamustine (B), and then 

combination of idelalisib and bendamustine (5 µM + 20 µM, respectively). Cells were harvested 

and total RNA was extracted and quantified. Isolated RNA was analyzed by real-time RT-PCR 

with primers and probe for MCL1 mRNA transcript. MCL1 gene expression levels were 

measured and normalized to the 18S endogenous control and each experiment was normalized 

to the DMSO control in the experiment. The figures above represent 8 CLL patients (CLL 516, 

068, 454, 483, 354, 203, 653, and 075).  
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indicated in 28% decrease in MCL1 gene expression levels as single agent and remained at 

lower levels in combination effect. Our results for both figures represent 8 different patient 

samples.  

2.5 Effect on anti-apoptotic gene expression levels by idelalisib and bendamustine 

combination treatment  

We further evaluated the effect of idelalisib on the BCL2 mRNA expression with 

combination of idelalisib and bendamustine. Post 24 h, DMSO, idelalisib (5 µM), bendamustine 

(20 µM), and combination of both (5+20 µM) treated cells were harvested and total RNA was 

extracted for real time RT-PCR experiment. Figure 17 shows that without IgM stimulation, 

there was a decrease in BCL2 gene expression in some patients, while some patients had 

elevated BCL2 mRNA levels. Similarly, combination of idelalisib with bendamustine also 

resulted in decrease in BCL2 mRNA for majority of the patients, except for two patient samples 

with elevated mRNA levels.  

Consistent with no IgM effect on BCL2 expression levels, when CLL cells were 

stimulated with IgM and then treated with DMSO, idelalisib, and bendamustine, and 

combination with same concentrations, the results indicated a decrease in BCL2 gene expression 

levels as single agents and in combination in some patients with variable elevated levels for 

other patients. Our results for both figures represent 8 different patient samples. 

2.6 Effect on anti-apoptotic protein expression levels by idelalisib and bendamustine 

combination treatment  

We have observed even in combination treatment, changes in the MCL1 and BCL2 gene 

expression levels. Accordingly, we evaluated the changes of Mcl-1 and Bcl-2  
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Figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Effect of idelalisib and bendamustine combination treatment on BCL2 gene 

expression in primary CLL cells.  

Primary cells were either untreated or stimulated with 10 µg/mL IgM for 30 mins. The cells 

were then treated with DMSO, 5 µM of idelalisib (I), 20 µM of bendamustine (B), and then 

combination of idelalisib and bendamustine (5µM + 20µM, respectively) for 24 h. Cells were 

harvested and total RNA was extracted and quantified. Isolated RNA was analyzed by real-time 

RT-PCR with primers and probes for BCL2 mRNA transcript. BCL2 gene expression levels 

were measured and normalized to the 18S endogenous control and each experiment was 

normalized to the DMSO control in the experiment. The figures above represent 8 CLL patients 

(CLL 516, 068, 454, 483, 354, 203, 653, and 075).   
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protein expression. CLL PBMCs were treated with DMSO, 5 µM of idelalisib, 20 µM 

bendamustine and then the combination for 24 h and 48 h. Mcl-1 and Bcl-2 protein levels were 

measured by immunoblots and normalized to GAPDH compared to DMSO. Results in figure 18 

indicated decrease in Mcl-1 protein levels at 24 h and 48 h with idelalisib alone and in 

combination treatment. There was variable expression of Mcl-1 protein with bendamustine 

treatment. Bcl-2/GAPDH protein expression levels did not change with treatments of idelalisib, 

bendamustine or their combination.   
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Figure 18.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Effect of apoptotic protein levels by idelalisib and bendamustine combination 

treatment in primary CLL cells. 

Primary cells were either treated with DMSO, 5 µM of idelalisib (I), 20 µM of bendamustine 

(B), and then combination of idelalisib and bendamustine (5 µM + 20 µM, respectively) for 24 h 

and 48 h.  Cells were harvested and protein lysates were analyzed using immunoblots to detect 

the protein expression levels for Mcl-1 and Bcl-2. GAPDH was used as control for equal protein 

loading. Quantitation for the immunoblots for each patient sample was performed by measuring 

the ratios of Mcl-1 and Bcl-2 to GAPDH for idelalisib and bendamustine treated samples, and 

then normalized to DMSO.  
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2.7 Effect on downstream signaling protein expression by idelalisib and bendamustine 

combination treatment  

We further assessed downstream signaling protein expression of PI3K and MAPK 

pathways with combination of the two drugs and performed a dose response experiment with 

varying dose as single agent and in combination. CLL PBMCs were treated with DMSO,  0.5, 1, 

3, 5,  and 10 µM of idelalisib, 5, 10, 15, 20 and 30 µM of bendamustine and then in combination 

0.5+5, 1+10, 3+15, 5+20, and 10+30 µM  of idelalisib and bendamustine, accordingly. Post 24 h 

treatment, cell lysates were harvested and immunoblot assay was performed for phospho-AKT 

and phospho-Erk expression. In figure 19, when compared to the total protein levels of AKT, 

there was modest decrease in phospho-AKT (Ser473) in combination effect. Phospho-Erk 

protein levels showed no changes in the protein levels with single agent treatment or with 

combination treatments.  

2.8 Effect on DNA damage marker γH2AX by idelalisib and bendamustine combination 

treatment  

From our study, idelalisib alone induced DNA damage response. We evaluated if 

bendamustine as a single agent and in combination with idelalisib further enhanced DNA 

damage response. CLL PBMCs were either left untreated or stimulated with IgM for 30 mins, 

then treated with DMSO control, 5 µM idelalisib, 20 µM bendamustine or combination for 24 h.  
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Figure 19.   

 

 

 

 

 

 

 

Figure 19. Effect on downstream signaling proteins by idelalisib and bendamustine 

combination treatment in primary CLL cells. 

Primary cells were treated with DMSO, idelalisib (0.5, 1, 3, 5, or 10 µM), bendamustine (5, 10, 

15, 20 or 30 µM) and then combination of idelalisib and bendamustine (0.5+5, 1+10, 3+15, 

5+20, 10+30 µM respectively) for 24 h. Cells were harvested and protein lysates were analyzed 

using immunoblots to detect the protein expression levels for phospho-AKT (Ser473) and 

phospho-Erk. GAPDH was used as control for equal protein loading. Quantitation for the 

immunoblots for each patient sample was performed by measuring the ratios of phospho- to 

total proteins for idelalisib treated samples, and then normalized to DMSO.   
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As shown in Figure 20, with no IgM stimulation, there was % γH2AX increase in 

idelalisib and bendamustine treated samples.  However, combination of drugs had a significant 

increase in DNA damage response as shown in the increased FITC-labeled γH2AX signal from 

flow cytometry. When the same CLL PBMCs, with IgM stimulation alone, there was a decrease 

in DNA damage response. Interestingly, even with single agents or combination, there was a 

reduced DNA damage effect observed with IgM stimulation. Overall, there was a significant 

decrease in % γH2AX phosphorylation in 5 separate CLL patients with IgM stimulation alone.  

2.9 Effect on DNA damage marker γH2AX by idelalisib and bendamustine combination 

treatment  

To determine the extent of DNA damage with idelalisib, bendamustine and in 

combination, we evaluated 5 different patient samples for DNA damage response to the 

treatments. CLL PBMCs were treated with DMSO, 5 µM idelalisib, 20 µM bendamustine or 

combination for 24 h. Cells were harvested and we performed immunostaining of CLL cells to 

analyze changes in the levels of phospho-Histone 2A variant X (H2AX) at Ser139, γH2AX by 

flow cytometry. In general, DMSO treated cells induced 1-3% γH2AX. In figure 20, idelalisib 

treated PBMCs induced 2-5% γH2AX while bendamustine alone induced 2-4% γH2AX. 

Finally, the combination of idelalisib with bendamustine resulted in enhanced DNA damage 

response, ranging from 4-7% γH2AX. Our study show enhanced apoptosis, decrease in Mcl-1 

protein and gene expression levels, and increased DNA damage response with combination of 

idelalisib and bendamustine, when compared to single agents alone. 

Similar experiment was performed in five additional patient samples (Figure 21).  In 

each case idelalisib-induced H2AX phosphorylation above base-line level and this molecular 

event was highest when bendamustine and idelalisib were combined.  
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Figure 20.  
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Figure 20. Idelalisib treatment in combination with bendamustine induces γH2AX 

expression in primary CLL cells. 

Primary cells were either untreated or stimulated with 10µg/mL IgM for 30 mins. The cells were 

then either treated with DMSO, 5 µM of idelalisib (I), 20 µM of bendamustine (B), or 

combination of idelalisib and bendamustine (5 µM + 20 µM, respectively) for 24 h. The cells 

were then harvested and fixed with 70% ethanol overnight. Cells were then washed with PBS 

and then incubated with 0.5% goat serum for 1 h, then probed with the primary antibody 

phospho-histone H2AX (1:500) for 2 h. Cells were washed and then co-incubated with 10 

µg/mL propidium iodide and 2.5 µg/mL DNAse-free RNAse for 15 mins. Cells were analyzed 

for fluorescence signal on flow cytometry for DNA damage response. Fluorescence-positive 

cells, with an upward shift in green, were marked as γH2AX positive treated cells.   
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Figure 21.  

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Idelalisib treatment in combination with bendamustine induces γH2AX 

expression in primary CLL cells. 

Primary cells were either treated with DMSO, 5 µM of idelalisib (I), 20 µM of bendamustine 

(B), or combination of idelalisib and bendamustine (5 µM + 20 µM, respectively) for 24 h. The 

cells were then harvested and fixed with 70% ethanol overnight. Cells were then washed with 

PBS and then incubated with 0.5% goat serum for 1 h, then probed with the primary antibody 

phospho-histone H2AX (1:500) for 2 h. Cells were washed and then co-incubated with 

10µg/mL propidium iodide and 2.5 µg/mL DNAse-free RNAse for 15 mins. Cells were 

analyzed for fluorescence signal on flow cytometry for DNA damage response. Fluorescence-

positive cells, with an upward shift in green, were marked as γH2AX positive treated cells. The 

figure represents 5 different CLL patients (CLL514, 455, 327, 137, and 103). A Student’s t-test, 

paired 2-tailed was performed for these patient samples.  
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2.10 Effect on DNA damage protein levels by idelalisib and bendamustine combination 

treatment  

Collectively, both idelalisib and bendamustine induced DNA damage response and this 

response was enhanced with combination. Therefore, we investigated changes in kinases and 

mediators involved in DNA damage and repair signaling pathway.   

CLL PBMCs were either untreated or stimulated with IgM for 30 mins and then treated 

with DMSO, 5 µM idelalisib, 20 µM bendamustine or combination for 24 h. We measured 

immunoblots for expression of total and phospho-protein levels. In parallel to the flow 

cytometry data that showed phosphorylation of H2AX with the drug treatments, Western blot 

analysis in figure 22 shows an increase in phospho-H2AX expression with idelalisib and 

bendamustine. In combination effect, there is a greater induction of phospho-H2AX, indicating 

more DNA damage response. This effect was slightly decreased when drug treatments were 

done with IgM stimulation. The total ATM remain unchanged across all treatments, however 

there was an increase in phospho-ATM with bendamustine alone and in combination. Idelalisib 

treatment did not induce phosphorylation of ATM with or without IgM stimulation. 

Phosphorylation of p53 is a response to DNA damage and repair. With bendamustine alone and 

in combination with idelalisib, there was stabilization of p53 protein, marked by 

phosphorylation of p53 at Ser15. Phosphorylation of p53 at Ser20 was also measured; however 

we observed variable expression with the treatments in different patient samples. Chk1 and 

Chk2 have also been recognized as the mediators of DNA damage response which 

phosphorylate p53 and are activated by ATR and ATM kinases. Idelalisib and bendamustine  
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Figure 22.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Effect on DNA damage protein levels by idelalisib and bendamustine 

combination treatment in primary CLL cells. 

Primary cells were either untreated or stimulated with 10 µg/mL IgM for 30 mins. The cells 

were then either treated with DMSO, 5µM of idelalisib (I), 20µM of bendamustine (B), or 

combination of idelalisib and bendamustine (5 µM + 20 µM, respectively) for 24 h. Cells were 

harvested and protein lysates were analyzed using immunoblots to detect the protein expression 

levels for phospho-p53, γH2AX, phospho-Chk2, and phospho-ATM. GAPDH was used as 

control for equal protein loading. Quantitation for the immunoblots for each patient sample was 

performed by measuring the ratios of phospho to total proteins for idelalisib and bendamustine 

treated samples, and then normalized to DMSO.   
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alone induced phosphorylation of Chk2 at Thr68; combination of both enhanced the expression 

of phospho-Chk2. There were no changes in the expression of total Chk2 protein with all 

treatments. We did not detect any phospho-Chk1 levels in our samples (data not shown). 

Aim 3: Effect of Mcl-1 deleted mouse embryonic fibroblasts (Mefs) in response to 

bendamustine 

3.1 Dose- and time-dependent apoptosis in Mcl-1 Δ/null Mefs in response to bendamustine  

First, the cell lines generously provided by Dr. Opferman were validated to ensure Mcl-1 

expression is not evident in the Mcl-1
Δ/null 

Mefs when compared to Mcl-1
wt/wt

, and indeed in 

figure 23, we observed no expression of Mcl-1 protein in the Mcl-1 deleted Mefs. To further 

validate the role of Mcl-1in bendamustine-induced sensitivity and the enhanced combination 

cytotoxicity, we used Mcl-1
wt/wt 

and Mcl-1
Δ/null 

murine embryonic fibroblasts (Mefs) cell lines. 

Mcl-1
wt/wt 

and Mcl-1
Δ/null 

Mefs were treated with DMSO, idelalisib (0.5, 1, 3, 5, or 10 µM), 

bendamustine (5, 10, 15, 20 or 30 µM) and then combination of idelalisib and bendamustine 

(0.5+5, 1+10, 3+15, 5+20, 10+30 µM respectively) for 24, 48, and 72 h. Cells were harvested, 

washed with PBS and then stained with Annexin V/PI, and the levels of apoptosis were 

measured by flow cytometry. Results in figure 24 show modest apoptosis with idelalisib 

treatment in Mcl-1
Δ/null 

Mefs; cell death from 2% - 3% at 24 h, 2% – 4% at 48 h, and 3% - 6% at 

48 h, when compared to Mcl-1
wt/wt 

and DMSO control. Interestingly, bendamustine treated Mcl-

1
Δ/null 

Mefs were sensitive to cell death when compared to Mcl-1
wt/wt 

Mefs. Apoptotic cell 

population ranged from 5% - 8% at 24 h, 8% - 13% at 48 h, and 10% - 20% at 72 h. Inclusively, 

combination of idelalisib with bendamustine in Mcl-1
Δ/null 

Mefs resulted in a dose- and time-

dependent cytotoxicity when compared to the Mcl-1
wt/wt 

Mefs. %Apoptosis observed for 

combination ranges from 5% - 10%at 24 h, 12% - 23% at 48 h, and finally 20% - 36% at 72 h. 
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The Mcl-1
wt/wt 

and Mcl-1
Δ/null 

Mefs experiments were done in triplicates and graphs represent 

three individual experiments with SEM.   
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Figure 23.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Mcl-1 protein expression in Mcl-1
Δ/null 

Mefs. 

Mcl
wt/wt 

and Mcl-1
Δ/null 

Mefs were cultured according to the method presented in materials and 

methods. Cells were harvested and protein lysates were analyzed using immunoblots to detect 

the protein expression levels Mcl-1 to ensure the cell lines with Mcl-1 deletion does not express 

Mcl-1 protein. GAPDH was used as control for equal protein loading. A mouse specific 

antibody detected the expression of mouse Mcl-1 in wild-type and Mcl-1 deleted isogenic cell 

lines.  
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Figure 24.  
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Figure 24.  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 24. Dose and time-dependent decrease in cell viability in Mcl
wt/wt

 and Mcl-1
Δ/null 

Mefs cell lines with combination of idelalisib and bendamustine treatments.  

Mcl
wt/wt 

and Mcl-1
Δ/null 

Mefs were treated with DMSO, idelalisib (0.5, 1, 3, 5, or 10 µM), 

bendamustine (5, 10, 15, 20 or 30 µM) and then combination of idelalisib and bendamustine 

(0.5+5, 1+10, 3+15, 5+20, 10+30 µM respectively) for 24, 48, and 72 h. Cells were harvested 

and then stained with Annexin V for 15mins followed by 5mins of PI. The levels of apoptosis 

for each treatment was detected using flow cytometry and the apoptotic cells were indicated by 

the cell population present in the lower right, upper right, and upper left quadrants. Experiments 

were done in triplicates and the results shown are average + SEM.  
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CHAPTER 4: Discussion and Conclusions 

Our findings indicate moderate level of cytotoxicity observed with idelalisib treatment in 

CLL lymphocytes. We observed a dose- and time-dependent apoptosis in primary CLL 

lymphocytes. Idelalisib treatment with IgM stimulation decreased phosphorylation of AKT, a 

critical downstream survival signal. We observed a significant decrease in global RNA synthesis 

in idelalisib treated CLL lymphocytes. Idelalisib treatment resulted in a decline in Mcl-1 

transcript and protein expression, with no changes to Bcl-2 protein and transcript levels. 

Interestingly, we observed that idelalisib treatment induced γH2AX, a hallmark of DNA damage 

response, evident with protein expression.  

Idelalisib and bendamustine as single agents induced moderate level of apoptosis in CLL 

lymphocytes; however, combination treatment resulted in enhanced apoptosis. We assessed 

combination index, and at all non-fixed ratios doses, we observed idelalisib and bendamustine 

couplet resulted in synergistic cytotoxicity.  Furthermore, we observed both idelalisib and 

bendamustine as single agents and in combination induced changes in protein expression related 

to DNA damage response pathway, particularly, γH2AX. We also evaluated the role of Mcl-1 in 

the mouse embryonic fibroblasts deleted with Mcl-1, and whether bendamustine-induced 

cytotoxicity related with depletion of Mcl-1 and sensitizing cells to apoptosis. To elucidate the 

mechanism of synergy, our data suggest that modulating Mcl-1 protein and transcript levels, as 

well as changes in DNA damage response and repair in CLL may contribute to the observed 

cytotoxicity.  Collectively, there are multiple pathways involved in the combination interaction 

with PI3K/AKT, members of the Bcl-2 family, as well as the DNA damage and repair 

responses.  
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Apoptosis and Bcl-2 family of anti-apoptotic proteins 

 Apoptosis is a controlled physiological process critical for normal cell biology and 

remains a key target in cancer.  The Bcl-2 family proteins are extensively involved in the 

regulation of the mitochondrial outer membrane permeabilization process and apoptosis. the 

The Bcl-2 family of proteins are subdivided into three functionally and structurally distinct 

subgroups based on BH domain homology as mentioned in the introduction. The 6 members of 

the anti-apoptotic proteins consist of Bcl-2, Bcl-b, Bcl-xL, Bfl-1, Bcl-w, and Mcl-1 proteins. 

Among these six proteins, three of them play a critical role in the pathophysiology of CLL.  

These anti-apoptotic proteins sequester the pro-apoptotic members Bax and Bak. Upon 

stimulation, the BH3-only protein members bind to antagonize the anti-apoptotic proteins. 

Ultimately, these six proteins function as the inhibitory effectors of the apoptotic machinery. 

Bcl-2 family of proteins and CLL 

 CLL is a hematologic malignancy characterized with a clonal expansion of CD5+ B 

lymphocytes; found to be replicationally quiescent, accumulating in the peripheral blood, lymph 

nodes, and bone marrow. These malignant quiescent cell populations in the blood compartments 

fail to start apoptosis program due to defects in the apoptotic pathway and the survival signals 

secreted from the microenvironment. Factors from the microenvironment include bone marrow 

stromal cells, nurse-like cells, and T-cells which produce cytokines and chemokines feeding into 

the NF-κB survival pathway as well as constitutively activating PI3K/AKT pathway. Overall 

activation of these pathways in CLL leads to overexpression of important anti-apoptotic 

proteins. Three key Bcl-2 anti-apoptotic proteins involved in CLL include Bcl-xl, Bcl-2 and 

Mcl-1. In CLL, there are high levels of BCL2 gene expression maybe caused due to hypo-

methylation of the gene through epigenetic regulation (94) and it is post transcriptionally 
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regulated by the lack of microRNA -15 and -16 (95). It is now well established that Mcl-1 is a 

critical player in the defective apoptotic program in CLL cells, with up-regulation of Mcl-1 

resulting in poor clinical outcome and resistance to chemotherapy (96-99). Furthermore, patients 

with rituximab resistance, an antiCD-20 antibody used for treating B-cell malignancies, revealed 

high expression of Mcl-1. Knocking down Mcl-1 with small interfering RNA (siRNA) was 

sufficient to induce apoptosis of the malignant CLL cells (100). It has also been established in 

BCR signaling pathway, particularly through PI3K/AKT axis, Mcl-1 expression is highly up-

regulated. Mcl-1 is found to be induced from the factors in the bone marrow stromal interactions 

in the CLL microenvironment (101). Therefore, Mcl-1 protein in CLL is pivotal in survival 

pathways and its complex regulation, expression and function play an important role in CLL cell 

survival.  

Mcl-1 and hematopoiesis and hematologic malignancies 

 Mcl-1 protein remains to be distinctive and has a fundamental role in normal cell 

physiology and in cancer. Mcl-1 has wide tissue and cell-specific expression and plays an 

essential role for survival and development. One prominent example includes lack of Mcl-1, but 

not Bcl-2, resulting in peri-implantation lethality during mouse embryo development (51). It has 

been demonstrated that the Mcl-1 is essential for the development and maintenance for T- and 

B-lymphocytes, and vital for neural development (55,102). Furthermore, Mcl-1 is important for 

hematopoietic stem cell survival (54). Mcl-1 was originally identified as early expression gene 

induced from a differentiation process in human myeloid leukemia cell line (66). Given Mcl-1’s 

prominent role in differentiation, development and apoptosis, Mcl-1 has also been implicated in 

cell cycle progression and now distinctly in DNA damage response and repair.  
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Regulation of Mcl-1 expression 

Mcl-1 is essential for survival of several cell lineages and overexpression of Mcl-1 

contributes to tumor malignancies. Therefore, its expression and function are tightly controlled, 

with intricate level of regulation at transcriptional, post-transcriptional and post-translational 

processes. Transcriptionally, cell-type specific regulation of Mcl-1 is evident. In hematopoietic 

cells, the PI3K/AKT and signal transducers and activators of transcription (STAT) and MAPK 

pathways are necessary for Mcl-1 expression (103,104). Additionally, conditional factors such 

as inflammatory cytokines, such as TNFα and IL-6 as well as growth factors may also rapidly 

induce Mcl-1 expression. The Mcl-1 promoter region contains multiple transcription factor 

binding sites including STAT response elements and nuclear factor kappa B binding sites (105). 

Importantly, Mcl-1 is down-regulated transcriptionally through number of conditional factors 

such as growth factor deprivation or induction of apoptosis through cytotoxic treatments 

(106,107). In general, Mcl-1 is down-regulated by inactivating the transcriptional factors which 

promote Mcl-1 transcription. However, binding of the E2F-1 transcription factor to the Mcl-1 

promoter region directly shuts down Mcl-1 transcription (108).  

Mcl-1 transcript 

Mcl-1 transcript is subject to alternative splicing, producing two protein isoforms; short 

form of Mcl-1 (Mcl-1s) and the long form of this protein (Mcl-1l) (109). Interestingly, the short 

isoform of Mcl-1 is unable to sequester the pro-apoptotic Bcl-2 family members, and therefore 

induces apoptosis (110). Similar to short half-life of Mcl-1 protein, Mcl-1 mRNA is also short-

lived and therefore Mcl-1 mRNA translation is regulated and targeted by microRNA 29b and 

the RNA binding protein CUGBP2 (111,112). Both of these inhibitors directly bind to the 3’ 

UTR of the Mcl-1 mRNA transcript. Finally, studies have demonstrated that eIF2a and 
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mTORC1 are also involved in overall Mcl-1 translation and apoptosis regulation (113,114). 

Similar to the PEST regions that are responsible for rapid protein turnover rate, Mcl-1 contains 

ARE sequences that signal for rapid mRNA transcript turnover (96).These specific sequences 

consist of the adenylate/uridylate-rich elements (AREs) found in the 3’ untranslated regions of 

the Mcl-1 mRNA transcript. The A-U rich elements are responsible for the rapid degradation of 

the short-lived (~1 hour) Mcl-1 mRNA transcript (96). 

Mcl-1 protein structure  

Mcl-1 has a unique structure which allows for complex molecular interactions and 

differential functional activities. Structurally, Mcl-1 anti-apoptotic protein contains 3 BH3 

domains, unlike the other anti-apoptotic members which contain 4 BH3 domains. Mcl-1 is a 

relatively large protein, compared to other members, containing 350 amino acid residues and it 

contains an N terminus which affects the proteins function and localization (115-117). Similar 

to Bcl-2, Mcl-1 contains a carboxy terminus with a hydrophobic transmembrane domain and 

BH2, BH1 and BH3 domains within the cytosolic area. Studies from Kozopas et al., identified 

Mcl-1 containing regions with proline (P), glutamic acid (E), serine (S), and threonine (T) 

residues, known as the PEST domains, a common feature in short-lived proteins (66). Mcl-1 

protein has rapid turnover, with a short half-life of 30 minutes to 3 hours, depending on the 

cellular conditions and stimuli; hence another unique feature of this protein is PEST domains 

and faster turn-over (118).  

Mcl-1 protein post-translation modifications/regulation 

 A complex regulation of Mcl-1 is also evident at translational and post-translational 

levels. Several studies have elucidated phosphorylation-dependent degradation of Mcl-1 or 

phosphorylation-dependent increase in stability of Mcl-1 protein. This feature is dictated by the 
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multiple phosphorylation sites within the PEST region of Mcl-1 protein. Several studies have 

demonstrated that extracellular regulated protein kinase-1(ERK) targets Thr163 phosphorylation 

site to stabilize Mcl-1, increasing the proteins half-life (119). In contrary, phosphorylation at 

Thr163 by c-Jun N-terminal kinase (JNK) coordinated with Glycogen Synthase Kinase 3 (GSK) 

leads to Mcl-1 degradation (120-124) GSK-3-mediated phosphorylation at Ser159 leads to 

ubiquitination-dependent degradation of Mcl-1 (122) Additionally, Maurer group also 

demonstrated that phosphorylation at Ser159 by GSK-3 inhibits Mcl-1 interaction with a pro-

apoptotic member, Bim, further inhibiting Mcl-1’s anti-apoptotic function (122). 

Phosphorylation at Ser155 and Thr163 by GSK-3 in combination results in destabilization of 

Mcl-1 and impairs the anti-apoptotic function of Mcl-1 (120). Additional phosphorylation sites 

include ERK target at Thr92 phosphorylation with Thr163, stabilizing Mcl-1 and it is required 

for Mcl-1’s anti-apoptotic function. Similarly, the phospho-residue sites at Ser64 and Ser121 

targeted by other kinases also results in stability and inactivation of Mcl-1 protein function 

(125-127). Overall, Mcl-1 contains rich phosphorylation sites on the PEST regions and these 

phospho-residue interactions have a significant outcome on Mcl-1 function.      

Mcl-1 and caspase-dependent cleavage  

 Mcl-1 has unique structural components further giving a depth of regulation at post-

translational level. Unlike other Bcl-2 family proteins, Mcl-1 consists of long N-terminus region 

involved with multiple modification sites. These modulations include Mcl-1 degradation, 

localization and interaction with other Bcl-2 family members, and phosphorylation, ultimately 

providing protein stability and cell survival and apoptotic responses. The PEST region within 

the N-terminus of Mcl-1 contains two caspases cleavage sites of Mcl-1 protein and several 

phosphorylation sites. In order to dampen the pro-survival signals, Mcl-1 protein can be cleaved 
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by caspases and granzyme B at two specific aspartate sites within Mcl-1, Asp127 and Asp157, 

both of these sites are targets for cleavage by caspase 3. Caspase-dependent cleavage of Mcl-1 

not only inhibits the anti-apoptotic function of Mcl-1; however, some studies argue that cleaved 

Mcl-1 may promote pro-apoptotic feature of Mcl-1 (128,129).  

Mcl-1 and proteosomal degradation 

 Mcl-1 protein degradation is also attributed to the ubiquitin-proteasome system. Mcl-1 

undergoes rapid turnover through ubiquitin-dependent degradation by the 26S proteasome and 

Mcl-1 ubiquitin ligase E3 (MULE) (130). Studies have identified MULE as it contains a 

conserved BH3 domain and it was demonstrated that the BH3 domain of MULE only associates 

with Mcl-1 and not any other members such as Bax, Bcl-2 and Bcl-xl (130,131). Studies from 

Zhong et al discovered that it was the lysine residues that were targeted for ubiquitination and 

accordingly; in vitro studies demonstrated MULE is essential for constitutive degradation of 

Mcl-1 (130,131). Importantly, knockdown of MULE by shRNA resulted in an accumulation of 

Mcl-1 and inhibited apoptosis of cells caused by DNA damaging agents. Contrary to the 

ubiquitination process, deubiquitination of Mcl-1 is processed by ubiquitin specific peptidase 9 

X-linked (USP9X) enzyme. USP9X was identified as one of the proteins associated with Mcl-1 

and its directing binding to the protein resulted in Mcl-1 stabilization; leading to cell survival 

(132). The well-regulated Mcl-1 at multiple levels is very significant in normal cellular biology 

as well as in malignant processes.  

Interaction of Mcl-1 with pro-apoptotic Bcl-2 family proteins 

 Mcl-1 has very distinctive characteristics relating to its structure and complex regulation. 

Mcl-1 has the ability to interact with diverse anti-apoptotic and pro-apoptotic proteins in the 

group. Mcl-1 belongs to a family of anti-apoptotic proteins with their main function as the 
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inhibitors of the apoptosis pathway. Mcl-1 can inhibit apoptotic signals by binding and 

sequestering the members of the pro-apoptotic proteins Bax and Bak. Bax and Bak facilitate 

apoptotic activation through outer mitochondrial membrane permeabilization causing release of 

cytochrome c and activating the caspases, leading to cell death. Studies have demonstrated that 

Mcl-1 can bind with BH3-only pro-apoptotic Bcl-2 family members and block the 

polymerization of Bax and Bak (96,133-135). It is well established that Mcl-1 also selectively 

interacts with BH3-only proteins such as Puma, Noxa, Bim and Bik (133,135,136). When Mcl-1 

is not bound to Bax or Bak, activator BH3-only proteins such as Bim and Puma directly bind 

and activate the pro-survival functions of Bax and Bak (136-138). Alternatively, Noxa binding 

to Mcl-1 leads to proteasomal degradation of Mcl-1 (135). Studies have also elucidated that 

over-expression of BH3-only proteins such as Puma can stabilize Mcl-1 and can no longer 

interact with MULE for its degradation. In general, Mcl-1 has many interactions with the 

members of the apoptotic family however; Mcl-1 may have even more unique role in DNA 

damage and repair pathways.    

Mcl-1 and DNA repair 

Mcl-1 plays a very critical role in apoptosis program and few studies have further 

attempted to characterize the role of Mcl-1 in DNA damage response. Decrease in Mc1-1 

enhances apoptosis through DNA damage response (113). Additionally, stressed cells 

undergoing DNA damage can either go through apoptosis or cell cycle arrest, which can go 

through p53 dependent or independent pathways. Another study explored the role of Mcl-1 in 

regulating both apoptosis as well as regulating cell cycle; where Mcl-1 interacts with 

proliferating cell nuclear antigen, PCNA (67). Key findings from adeno virus infected cells 

resulted in down-regulation of Mcl-1 due to DNA damage, increase in phosphorylated H2AX 
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and ATM; caused from double strand breaks in DNA (139). Studies have demonstrated the 

interaction of Mcl-1 with cyclin dependent kinase-1 (Cdk-1) and expression of Mcl-1 leads to 

suppression of cell proliferation. Jamil S et al revealed Mcl-1 coordinates DNA damage 

mediated checkpoint response by binding at the sites of double strand breaks in DNA, 

associating with key DNA damage response proteins (68,140). Interestingly, this study also 

concluded that ATR signaling pathway and not ATM pathway was mediating Mcl-1 interaction 

with γH2AX (140). Taken together, all the previous studies have explored the interaction of 

Mcl-1 with DNA damaging agents and its outcome in DNA damage and repair response. 

Idelalisib-induced DNA damage response 

PI3Kδ is an important PI3K family class I isoform expressed exclusively in B-cells and 

is known to promote malignant cell growth and survival. BCR survival pathway in CLL 

contributes to the activation of the PI3K/AKT survival pathway and is therefore a therapeutic 

target. PI3Kδ plays a critical role in BCR signaling and the delta isoform is over-expressed in 

many B-cell malignancies including CLL. It is well established in solid tumors that the 

PI3K/AKT axis regulates multitude of translation and transcription processes and further targets 

downstream transcription factors and proteins (33,141). In addition, studies from Cantley et al 

and others demonstrate PI3Kα and PI3Kβ have a very important role in DNA damage and repair 

mechanisms (142,143). Interestingly, our investigation suggests inhibition of the delta isoform 

with idelalisib may have a potential role in DNA damage and repair responses. 

 Consistent with these prior observations with PI3K α and β isoforms, our data 

demonstrated that CLL lymphocytes treated with idelalisib induced phosphorylation of γH2AX 

both with immunostaining as well as protein immunoblot assays. Interestingly, when idelalisib 

was treated with IgM stimulation, the signal and the protein expression of γH2Ax decreased. 
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Furthermore, our data suggest an important role of PI3Kδ inhibition in other DNA damage and 

repair proteins. As shown by Western blot analysis, idelalisib treatment also led to 

phosphorylation of Chk2 and variable expression of phospho-ATM. This unique observation 

needs to be explored more in details regarding the role and the potential cross-talk with 

PI3K/AKT pathway and DNA damage and repair pathways.    

Bendamustine-induced DNA damage response 

DNA damage signaling transduction pathway is initiated with a DNA damage 

recognized by the upstream kinases ATM and ATR (144). Downstream of these proteins are the 

Chk1 and Chk2 kinases. Several contrasting studies show the regulation of p53 by Chk2, 

however; these studies remain to be unclear. Although it is established that Chk2 regulates 

ionizing radiation (IR)-induced p53-dependent apoptosis, there seems to be ambiguity about the 

role of Chk2 in apoptosis induced by chemotherapeutic agents, especially alkylating agents 

(145-148). Furthermore, various kinases upstream such as ATM, Chk1 and Chk2 are 

responsible for activation of p53 in response to DNA damage. Activation of p53 can lead to 

both cell cycle arrest and DNA repair or apoptosis processes. DNA damage induces p53 at 

Ser15 and Ser20, furthermore; p53 can be phosphorylated by ATM at Ser15 (147,149). 

 Our study shows that DNA damage induced by bendamustine in CLL lymphocytes 

induced phosphorylation of ATM as well as p53 at Ser15. In addition, our data show 

phosphorylation of Chk2 protein with bendamustine treatment in CLL lymphocytes regardless 

of IgM stimulation of the BCR pathway. Phosphorylation of H2AX (γH2AX) is a well-known 

marker for DNA double-stranded breaks, which is associated with interstrand crosslinks in the 

DNA (77). Phosphorylation of H2AX is a hallmark of recognizing DNA damage and further 

elicits and recruits DNA repair and cell-cycle checkpoint proteins to the site of DNA damage 
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(150,151). Our results from Western blot analysis show an increase in γH2Ax protein 

expression in bendamustine treated CLL lymphocytes; however, this effect was decreased under 

combination treatment of bendamustine and IgM stimulation of the BCR pathway. These results 

may suggest a possible cross-talk between the DNA damage pathway and the BCR pathway. 

Overall, in line with DNA damage response, our study shows that bendamustine treatment in 

CLL lymphocytes elicited DNA damage response through activation of p53, ATM, Chk2 and 

γH2AX.  

Idelalisib and bendamustine in combination: mechanism of synergy 

 As explained in the rationale for combination of idelalisib and bendamustine and the 

observed synergy in CLL, our data elucidated a potential role of members of the anti-apoptotic 

protein family and the DNA damage and repair response. Studies from Juvekar et al 

demonstrated that inhibition of PI3K α and β isoforms result in modulating DNA damage and 

repair responses (142). Our data suggest that the mechanism of synergy may be due to decline in 

Mcl-1 and modulating DNA damage responses such as induction of γH2AX and other 

downstream signaling proteins, further validation with mechanistic studies would elucidate the 

potential cross-talk with the two pathways.  Bendamustine-induced DNA damage in Mcl-1 

deleted Mefs sensitized cells to apoptosis in dose- and time-dependent manner. While some 

studies suggest the role of Mcl-1 in DNA damage and once exposed to DNA damage response, 

Mcl-1 is not only essential but it is translocated to nucleus and facilitates DNA damage and 

repair responses (140). Our study described provided a strong rationale for the feasibility of 

PI3Kδ inhibitor, idelalisib in combination with bendamustine and further mechanistic studies 

would improve our understanding of the combination synergy and efficacy translating to 

applicable therapy with minimal toxicity in patients.  
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Conclusion and future directions   

 The investigation described in this thesis focuses on the emerging role of PI3Kδ 

inhibitors as therapeutic targets and evaluating the effect of PI3Kδ inhibitor, idelalisib, and a 

combination strategy with a chemotherapeutic agent, bendamustine in chronic lymphocytic 

leukemia. Our findings elucidate idelalisib and bendamustine, as single agent and in 

combination, are cytotoxic in CLL. These agents target PI3K and DNA damage pathways, and 

furthermore target transcription and translation of anti-apoptotic and DNA damage to disrupt 

survival and proliferation signals in CLL.  

 Our study with idelalisib and bendamustine provides an initial mechanism of action that 

may guide further use of this combination and support the use of PI3Kδ inhibitors and in 

combination with chemotherapeutics agents. Given the complexity of the two extensive 

pathways involved with treating idelalisib and bendamustine, questions remain unclear. One 

prominent question is whether there are other mechanisms of cell death that maybe involved 

with idelalisib treatment. It is well established that multiple survival pathways may be activated 

during the survival signals and therefore, there may be redundant pathways activated. Besides 

the phosphorylation targets, direct modulation of apoptosis and DNA damage response 

pathways may elucidate the exact mechanism of idelalisib and bendamustine as single agents or 

in combination. Evaluating other Bcl-2 family members and pharmacological inhibitors of Mcl-

1 and Bcl-2, such as ABT-737 and ABT-199 may strengthen the mechanism of action with 

idelalisib. Additionally, it would be interesting to also explore the cross-talk of the pathways on 

a global scale through reverse-phase protein analysis and to detail in the up-regulation or down-

regulation of important proteins.  
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 In addition, effect of idelalisib under microenvironment conditions is a critical part of 

the study that needs to be further explored. Our study showed the IgM stimulation aspect of 

idelalisib treatment analysis but more detailed models of the CLL microenvironment would 

characterize the mechanism of action of idelalisib. Moreover, based on the recent finds from Ali 

et al 2014, it would be interesting to speculate how idelalisib and bendamustine modulate 

responses in T cell immunity (18). Idelalisib, when used as a single agent results in an increase 

in lymphocytes in the peripheral blood, presumably due to egress of CLL cells from lymph 

nodes (152). If bendamustine is added, it will result in apoptotic cell death of those lymphocytes 

resulting in enhanced clinical response. As a final point, idelalisib and bendamustine are already 

approved in the clinic for CLL therapy, and currently, idelalisib is in clinical trials with 

bendamustine and rituximab in previously treated, relapsed and untreated patient populations 

(NCT01569295, NCT01980888 and NCT01088048). Further understanding the mechanism and 

the biomarkers targeted with these drug treatments will constitute optimal treatment regimen 

options for CLL patient therapy in clinic.  
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